?- prefer_profile([1,2],s3,M), prefer_profile([1,2],s4,M1), Ms=[1:(M,c,a,0,0),2:(M1,c,a,0,0)], % for new version impl13b.pl %Ms=[(M,c,a,0,0),(M1,c,a,0,0)], % for earlier versions nash(c,s2,Ms,gMR2(2,mr),h0,_,[1,2],yes). For state s2, outcome c [out, mr], rule 2 and message profile: 1: ([[a, c, d, b, z], [b, d, c, a, z]], c, a, 0, 0) 2: ([[a, d, c, b, z], [b, c, d, a, z]], c, a, 0, 0) agents=[1],Pzs=[1, 2, 3],Czs=[b, c, z],Lcc=[b, c, z]
agents=[2],Pzs=[1, 2, 4],Czs=[a, c, z],Lcc=[a, c, z]
best response groups: [[1], [2]] This action profile is a Nash equilibrium. M = [[a, c, d, b, z], [b, d, c, a, z]] M1 = [[a, d, c, b, z], [b, c, d, a, z]] Ms = [1: ([[a, c, d, b, z], [b, d, c, a|...]], c, a, 0, 0), 2: ([[a, d, c, b|...], [b, c, d|...]], c, a, 0, 0)] Yes ?-
選好順序(1\2) | [b, c, d, a, z] | [b, d, c, a, z] | ||||||||||||||||||||||||||||||||||||||||||
[a, c, d, b, z] | c(s1) | c(s3) | ||||||||||||||||||||||||||||||||||||||||||
[a, d, c, b, z] | c (s4) | d (s2) |