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Abstract

The SCLP (Social Choice Logic Programming) approach aims to model the axioms of
collective decision making and to prove the classical results on preference aggregation
computationally, such as Arrow’s social welfare function and its variants, by using
PROLOG, albeit for the smallest case. This paper aims to extend and improve the
SCLP approach in two directions. First, the Cube-First Method (CFM) is proposed
to improve the computational efficiency. By using the minimal set of profiles which
is sufficient to prove the dictatorial result earlier in the recursion over the set of all
profiles, the computation is prominently accelerated. Second, the Profile Sequence
Formation (PSF) based on decisiveness-strengthen connection is argued and it is
shown that it can partly simulate acceleration under the CFM.

1 Introduction

K. J. Arrow [1]’s general possibility theorem tells us that only dictatorial aggregation is
possible when transitivity (or linear), weak Pareto optimality, and IIA are simultaneously
satisfied on the aggregation of individuals’ orderings (i.e., the social welfare function).

Practically it is difficult to verify for every logically possible combination of the individual
preference orderings (i.e., profile) and the aggregated ordering. In other words, Arrow’s proof
shows this complexity is superficial and it can be reduced to the set of a single individual’s
orderings if we assumes a few number of axioms each of them seems no to violate democracy,
at least, intuitively.

The SCLP (Social Choice Logic Programming) [2, 3, 4] is an alternative computational
modeling and simulation method which verifies or substitutes the traditional axiomatic
modeling of the social choice theory. For example, Arrow [1]’s social welfare function and
its variants can be proved easily, however, only for the smallest case, i.e., two agents and
three alternatives, within a second (see [2]).

This approach also has been generalized to prove the variants of the theorem [5, 6], to
derive the strategy-proof voting procedures, to handle other types of orderings and domain
conditions, and to recast them in game theory (see [3, 4]). For example, in order to prove
Arrow’s dictatorial result, both the permissible individual orderings (and their profile) and
the aggregated ordering are linear (l) or transitive (t), satisfying IIA and Pareto conditions.
Oligarchy theorem (see Sen [6]) is a variant of it where quasi-transitive(q)-valued function
is used alternatively.

Whereas it is possible to extend a SCLP model so as to include more than three agent
and more than four alternatives, the computation might be awkward. For example, proving
Arrow’s theorem even on the transitive domain of three agents and three alternatives might
take a day or more on your PC (see Table 1).

This is because of the implementation of social welfare functions by using a naive recur-
sion over the set of possible ordering profiles (see Section 2).

This paper aims to extend and improve the SCLP approach in two directions. First,
the Cube-First Method (CFM), which uses the Cube Representation [4] in order to realign
the list of all possible profiles as the second argument in swf3, is proposed. The cube is
a minimal set of profiles of individual orderings, which is sufficient to prove the Arrow’s
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Table 1: The time consumption to prove the Arrow-Sen-type results of ordering aggrega-
tion by using standard recursion (∗memory allocation error after around 22 hours and two
dictatorial SWF s are generated).

agents alternatives domain value conditions resulting rule time (rough)
two three l l iia, p dictatorial 0.8 sec
two three l q iia, p oligarchical 4 sec
two three t t iia, p dictatorial 20 sec
two three t q iia, p oligarchical 70 sec

three three l l iia, p dictatorial 3260 sec
three three l q iia, p oligarchical 6900 sec
three three t t iia, p dictatorial a day∗

three three t q iia, p oligarchical unknown

dictatorial result.
In both linear and transitive domain, using a subset of profiles which consists of the

subsidiary cubes consists of all two-agent subgroup unanimous profiles earlier turns out to
be an effective way.

Second, the Profile Sequence Formation (PSF), which outputs the list of profiles as the
domain of the aggregation function and on which the SCLP recursive computing works, is
tested experimentally. And this also is a social-oriented computing where each profile is
considered as a virtual agent and their coalition formation based on decisiveness-strengthen
connection is simulated.

Similar to the CFM acceleration, in fact, at a point of departure, the PSF selects a pair
of an element in the cube and the counterpart within its complementary cube is connected,
it nevertheless will be grown up to a complete (or maximal, at least) list of profiles irrelevant
to the order of the remaining elements in the cube.

These method both can reduce the time the system spends over computing all social
welfare functions for above mentioned case in twenty minutes. But the latter is considered
more favorable from the viewpoint of parallel computing.

The remaining part of this paper is organized as follows: Section 2 introduces the original
SCLP approach. In Section 3 we will extend the original approach to faster computation
by using the Cube-First Method. The process of Profile Sequence Formation is simulated
and compared to the method in Section 4. Lastly, Section 5 concludes with some remarks.

2 the SCLP approach

The SCLP approach models and simulates the logical conditions (i.e., axioms) of the pref-
erence modeling based on several types of binary relations on the set of alternatives (i.e.,
the domain type); for example, linear ordering (l), transitive ordering (t), quasi-transitive
ordering (q), acyclic relation (a), and complete and reflexive relation (o).

Definition 1 (SCLP Model). A conceptual model in the SCLP approach, or simply a
model, is a four-tuple (m, n, r, v), where m: a number of alternatives (or states of society),
n: the number of individual agents, r: the domain, i.e., which type of relation is permissible
to individual preference, and v: the type of relation as the aggregated preference, or the
aggregation rule per se.

For the simplicity of analysis, the number of alternatives (or states) is assumed to be
three throughout this paper. Let us denote a model, therefore, a three-tuple (n, r, v).
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% domain_type/1: To inspect which ordering type is currently used.
?- domain_type(I).
I = l:linear
Yes
% chdom/1: To change the domain type.
?- chdom(I).
I = l:linear->t:transitive
Yes
% model/1: To inspect the alternatives and agents.
?- model(A,B).
A = states:[a, b, c]
B = agents:[1, 2]
Yes
% make_n_agents/1: to increase or decrease the number of agents.
?- make_n_agents(3).
Yes.
?- agents(N).
N = [1, 2, 3]
Yes
% chdpm/1: To change the sign-based representation.
?- chdpm(I).
I = 1->2
Yes

Figure 1: Selecting the model and representation in the SCLP system: domain type, the
number of agents, the sign-based representation.

As the default, the SCLP system uses two-agent domain of linear ordering, and the same
valued aggregation function, namely, (n = 2, r =l, v =l).

As for the computational counterpart of the SCLP modeling, the user can alter the
current domain type (i.e., which ordering r/1 is used to construct each profile), the number
of agents, and the sign-based representation of the relations, by using chdom, make n agents
and chdpm, respectively. See Figure 1.

And the rules of collective decision making rules, such as weak Pareto optimality (i.e.,
unanimity), IIA (Independence of Irrelevant Alternatives), monotonicity, strategy-proofness,
and so on naturally.

pareto_rule(w,RR->Q):- \+ (dop(XY),agree(s,XY,RR),\+ p(XY,Q)).
iia(RR->R,F):- \+ (member(QQ->Q,F),dop(XY),
is_same_profile_for_dop(XY,RR,QQ),opposite(_,XY,[R,Q])).

Each ordering profile (rr) and the collective decision rules defined over the set of profiles
(swfs) are coded into PROLOG clauses in standard manner. And the above mentioned
axioms are accumulated along the profile recursion.

rr([],[]).
rr(QQ):- model(_,_:Agents),rr(QQ,Agents).
rr([R|Q],[_|N]):- rr(Q,N),r(R).
all_rr(L):- findall(QQ,rr(QQ),L).

The PROLOG model of those aggregation rules which satisfy IIA and Pareto condition
in the SCLP approach is as follows.
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swf([],[],_).
swf([RR->Q|F],[RR|L],X):- swf(F,L,X),axiom_swf(X,RR->Q,F).
swf(F,X):- all_rr(L),swf(F,L,X).
axiom_swf(iia,RR->Q,F):- r(Q),iia(RR->Q,F).
axiom_swf(pareto,RR->Q,_):- r(Q), pareto(w,RR->Q).
axiom_swf(arrow,RR->Q,F):- r(Q),t(Q),pareto(w,RR->Q),iia(RR->Q,F).
axiom_swf(sen,RR->Q,F):- q(Q),pareto(w,RR->Q),iia(RR->Q,F).

Then PROLOG is also used to simulate the theorems of these axiomatic agent society
based on resolution principle a basic automated theorem proving. It can produce all the
logically possible social welfare function(SWF )s given a domain-and-values.

Figure 2 demonstrates the automated proof by PROLOG for a sort of the Arrow-Sen-
type aggregation on the domain where linear ordering for each individual agent and quasi-
transitive for the aggregated ordering is permissible respectively.

Note that in the literature the word SWF means that of the transitive-valued (i.e.,
Arrow-type) aggregated ordering defined over the set of the transitive (or linear) individual
ordering profiles. However, in this paper it is intended that swf denotes a code of any type
of aggregation function over any type of domain and value which are specified by the first
argument.

Further, the SCLP system enables two alternative sign-based representation of binary
relations. Under the second mode, dp mode(2), switched by a flip-flop command chdpm(I)
as shown in Figure 1. However it might be slightly slower than the default mode (the first
mode), it benefits the user of SCLP to see that special two relations which are excluded
either from l, t, q, and a because of their cyclicity.

% inspect all cyclical relations using r/4.
?- r(A,B,C,c),nl,write(A;B;C),fail.
[+, +, +];[ (a, b): +, (b, c): +, (c, a): +];[a>b, b>c, c>a]
[-, -, -];[ (a, b): -, (b, c): -, (c, a): -];[b>a, c>b, a>c]
No

3 the Cube-First Method

In this section we will modify the SCLP approach in the preceding section into a faster
computation based on the Cube Representation of social welfare function ( [4] contains
the slides). The cube as a set of minimal profiles has been used, at least implicitly, in
the literature (for example, see the proof by [1, 5]), but such a graphical interpretation is
unprecedented as far as I know.

For n=2, the cube consists of the following profiles (dpm = 2, domain = l: linear).

?- dp_mode(2),domain_type(l:_).
Yes
?- rr_cube(dp(2,l),K,B),nl,write(K:B),fail.
% ab bc ca ab bc ca
1: [[-, +, +], [+, +, -]]
3: [[-, -, +], [-, +, -]]
5: [[+, -, +], [-, +, +]]
7: [[+, -, -], [-, -, +]]
9: [[+, +, -], [+, -, +]]
11: [[-, +, -], [+, -, -]]
No
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?- model(A,B), display_domain.
current domain: CGITVZ
[base domain=l:linear]
A = states:[a, b, c]
B = agents:[1, 2]
Yes
?- stopwatch((swf(F,sen),display_swf_t2(F),fail;true),T).
swf:row col |CGITVZ ab|-+-+-+ bc|+--++- ca|+++---
--------------------------------------------------
[-, +, +]=C |CCCCCC -|------ +|++++++ +|++++++
[+, -, +]=G |GGGGGG +|++++++ -|------ +|++++++
[-, -, +]=I |IIIIII -|------ -|------ +|++++++
[+, +, -]=T |TTTTTT +|++++++ +|++++++ -|------
[-, +, -]=V |VVVVVV -|------ +|++++++ -|------
[+, -, -]=Z |ZZZZZZ +|++++++ -|------ -|------
swf:row col |CGITVZ ab|-+-+-+ bc|+--++- ca|+++---
--------------------------------------------------
[-, +, +]=C |CEFKLO -|-0-0-0 +|+00++0 +|+++000
[+, -, +]=G |EGHMOQ +|0+0+0+ -|0--00- +|+++000
[-, -, +]=I |FHIOPR -|-0-0-0 -|0--00- +|+++000
[+, +, -]=T |KMOTUW +|0+0+0+ +|+00++0 -|000---
[-, +, -]=V |LOPUVX -|-0-0-0 +|+00++0 -|000---
[+, -, -]=Z |OQRWXZ +|0+0+0+ -|0--00- -|000---
swf:row col |CGITVZ ab|-+-+-+ bc|+--++- ca|+++---
--------------------------------------------------
[-, +, +]=C |CGITVZ -|-+-+-+ +|+--++- +|+++---
[+, -, +]=G |CGITVZ +|-+-+-+ -|+--++- +|+++---
[-, -, +]=I |CGITVZ -|-+-+-+ -|+--++- +|+++---
[+, +, -]=T |CGITVZ +|-+-+-+ +|+--++- -|+++---
[-, +, -]=V |CGITVZ -|-+-+-+ +|+--++- -|+++---
[+, -, -]=Z |CGITVZ +|-+-+-+ -|+--++- -|+++---
% time elapsed (sec): 1.172
F = _G157
T = 1.172
Yes
?-

Figure 2: Two-agent, three-alternatives, and quasi-transitive-valued aggregated rule (the
oligarchy theorem). The above figure shows that PROLOG system has proved that two
dictatorial rules, one oligarchical rule, and no other rules can be generated. Each rule
has been displayed as a cross table of two agents’ orderings, augmented with its binary
decomposed sign-patterns for the three directed pairs, (a, b), (b, c), and (c, a). This
experimentation used the Cube-First Method. If the original version is used instead, it will
take around 4 or 5 seconds.
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These profiles corresponds to the six of eight vertices of the cube. They can be depicted
as six positions of a ball in the cube [4], where three faces of it perpendicular to X-Y-Z axis,
and intersecting at the all-’+’ vertex. The ball position projected on each face represents
the decomposed binary relation profiles for the ternary pairs the above mentioned. Two
special diagonal vertices, all-’+’s and all-’−’s, have to be excluded from the cube because
these are cyclical profiles not allowed in either type of domain.

Note that each profile (i.e., vertex) in the cube agrees its adjacent profiles on only one
pair. It can also be observed that those profiles are generated by reversing the sign for a pair.
The even numbering is preserved for their intermediate positions which will be explained
below.

With this cube representation we can see the decisiveness for each pair of alternatives,
which is implied by IIA and Pareto conditions, is propagating along the adjacent vertices.
And it can be considered that this is possible because of the social welfare function con-
strained by these conditions for three (or more) individuals is one-dimensional essentially
as proved by Arrow.

Computationally, this is done simply by realignment of profiles so as to move the cube
profiles into the last position. Let us call this alternative is the Cube-First Method (CFM),
where all rr/1 is modified with all rr cube/1 as follows:

all_rr(A):- all_rr_cube(C), findall(D, rr(D), E),
subtract(E, C, F), append(F, C, A).

all_rr_cube(C):- domain_type(Y:_), dp_mode(I),
setof(K:X,rr_cube(dp(I,Y),K,X),L), findall(X,member(_:X,L),C).

This realignment of profiles can reduce the cost of checking IIA condition. In fact, it is
sufficient and minimal in the sense below.

Proposition 1 For linear two-(or three-)agent domain, the cube profiles are sufficient to
derive the dictatorial result of the SWF . It is also minimal in that any proper subset of it
cannot derive that result.

When n is greater than two, by replacing the agent positions, the cube profiles can be
extended to a set of (n − 1)-agent subgroup unanimity profiles, which is the above two-
agent cube profiles if the unanimous components of it are reduced. This extended cube
representation called the Hyper Plane Cube. The difference set is as follows.

?- hyper_plane_cube(C),member(B,C),\+ rr_cube(dp(2,l),K,B),
nl,write(B),fail.
[[+, +, -], [-, +, +]]
[[-, +, -], [-, -, +]]
[[-, +, +], [+, -, +]]
[[-, -, +], [+, -, -]]
[[+, -, +], [+, +, -]]
[[+, -, -], [-, +, -]]
No

As for the transitive ordering domain, the intermediate positions are required in addition
to them (see [4]). The following query shows the zero profile of total indifference, two
adjacent vertices of the cube numbered 1 and 3 with the intermediate profile, numbered 2,
between them.

?- rr_cube(dp(2,t),K,B), K<4, nl,write(K:X),fail.
0:[[0, 0, 0], [0, 0, 0]]
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Table 2: The time consumption to prove the Arrow-Sen-type results of ordering aggregation
by using the Cube-First Method and dp mode(1).

agents alternatives domain value conditions resulting rule time (rough)
two three l l iia, p dictatorial 0.4 sec
two three l q iia, p oligarchical 1 sec
two three t t iia, p dictatorial 8 sec
two three t q iia, p oligarchical 12 sec

three three l l iia, p dictatorial 18 sec
three three l q iia, p oligarchical 57 sec
three three t t iia, p dictatorial 1650 sec
three three t q iia, p oligarchical 4200 sec

1:[[-, +, +], [+, +, -]]
2:[[-, 0, +], [0, +, -]]
3:[[-, -, +], [-, +, -]]
No

Proposition 2 For the transitive domain, it is needed to include the intermediate positions,
in addition to those vertices for linear domain and the pair of total indifference relations in
order to prove the similar result to Proposition 1.

Here again, the SCLP provides us automated proof instead of mathematical proof. Fig-
ure 3 shows the Arrow-type aggregation function confined for the cube profiles in the binary
form (see Figure 3). And we consider that this proves the first half part of Proposition 2
(and 1). The minimality would be proved by the fact that the following query to fail.

?- all_rr_cube(C),nth0(K,C,B),subtract(C,[B],D),swf(H,D,arrow),
\+ (d_pair(XY),decompose_swf(XY,H,G),length(G,N),N<9).
No

The automated proof by PROLOG can be prominently accelerated by using the cube
profiles at earlier steps in the recursion. See Table 2 for the statistics summary and com-
pare it with Table 1. For example, as shown in Figure 4, three-agent linear ordering domain
case the automated proof is demonstrated within less than 20 seconds, whereas the original
version took near one hour as we seen in Table 1. However addition of the intermediate po-
sitions could not have a clear improvement with respect to the computation time. Therefore
we will not use the intermediate positions as default, but reserve it as cube mode(4) and use
it by chcube/1 if needed.

4 Profile Sequence Formation

CFM in the preceding section apparently seems to be no more than an artificial realignment
of the profile list. In this section, however, rather than cutting the cost of computing, we
will focus on evolving process of such a list. In words, we will answer the following question
experimentally: Is a sequence (optimal) for the list of profiles (all rr) over which the
aggregation function defined, and the recursive computing works efficiently, can be evolved
under some simple rules? More straightforwardly, is it possible to consider the CFM as the
result of the following evolutive process?

Definition 2 (Profile Sequence Formation). The Profile Sequence Formation (PSF) is an
experimental method where each profile is considered as an virtual agent and their coalition
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?- model(A,B), display_domain, chcube(_->4).
current domain: CFGHILOQTUVWZ
[base domain=t:transitive]
A = states:[a, b, c]
B = agents:[1, 2]
Yes
?- all_rr_cube(C), stopwatch((swf(F,C,arrow),display_swf_t6(F,s), fail
); true, Time), !,fail.
[0, 0]->[ (a, b):[0], (b, c):[0], (c, a):[0]]
[0, +]->[ (a, b):[0], (b, c):[0], (c, a):[0]]
[0, -]->[ (a, b):[0], (b, c):[0], (c, a):[0]]
[+, 0]->[ (a, b):[+], (b, c):[+], (c, a):[+]]
[+, +]->[ (a, b):[+], (b, c):[+], (c, a):[+]]
[+, -]->[ (a, b):[+], (b, c):[+], (c, a):[+]]
[-, 0]->[ (a, b):[-], (b, c):[-], (c, a):[-]]
[-, +]->[ (a, b):[-], (b, c):[-], (c, a):[-]]
[-, -]->[ (a, b):[-], (b, c):[-], (c, a):[-]]
---end of swf ---
[0, 0]->[ (a, b):[0], (b, c):[0], (c, a):[0]]
[0, +]->[ (a, b):[+], (b, c):[+], (c, a):[+]]
[0, -]->[ (a, b):[-], (b, c):[-], (c, a):[-]]
[+, 0]->[ (a, b):[0], (b, c):[0], (c, a):[0]]
[+, +]->[ (a, b):[+], (b, c):[+], (c, a):[+]]
[+, -]->[ (a, b):[-], (b, c):[-], (c, a):[-]]
[-, 0]->[ (a, b):[0], (b, c):[0], (c, a):[0]]
[-, +]->[ (a, b):[+], (b, c):[+], (c, a):[+]]
[-, -]->[ (a, b):[-], (b, c):[-], (c, a):[-]]
---end of swf ---
% time elapsed (sec): 0.516
No

Figure 3: The above PROLOG code provide an automated proof of that the cube profiles
are sufficient to derive the dictatorial result of the Arrow-type SWF and it is minimal. In
the above figure, the SCLP system proved that two dictatorial SWF s which is transitive
and confined to the cube profiles for two-agent domain, shown in binary decomposed form.

8



?- make_n_agents(3).
Yes
?- model(A,B), display_domain.
current domain: CGITVZ
[base domain=l:linear]
A = states:[a, b, c]
B = agents:[1, 2, 3]
Yes
?- chcube(_->1).
Yes
?- stopwatch((swf(F,arrow),display_swf_t6(F,s),fail;true),T).
[+, +, +]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[+, +, -]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[+, -, +]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[+, -, -]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[-, +, +]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
[-, +, -]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
[-, -, +]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
[-, -, -]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
---end of swf ---
[+, +, +]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[+, +, -]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[+, -, +]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
[+, -, -]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
[-, +, +]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[-, +, -]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[-, -, +]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
[-, -, -]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
---end of swf ---
[+, +, +]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[+, +, -]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
[+, -, +]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[+, -, -]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
[-, +, +]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[-, +, -]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
[-, -, +]->[ (a, b):[+], (a, c):[+], (b, c):[+]]
[-, -, -]->[ (a, b):[-], (a, c):[-], (b, c):[-]]
---end of swf ---
% time elapsed (sec): 18.484
F = _G16
T = 18.484
Yes

Figure 4: Automated proof of the three-agent social welfare function using recursion with
the cube-first profile sequence. The left-hand side of an arrow represents the binary pattern
of the profiles and the right-hand side the SWF values on each pair.
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Table 3: Distribution of the degree of self-(in)decisiveness (sdd) values for each domain.
l: linear n = 2 n = 3 t: transitive n = 2 n = 3

sd(1) 6 6 sd(1) 6 6
sd(2) 12 36 sd(3) 42 150
sd(3) 12 72 sd(5) 48 432
sd(6) 6 102 sd(13) 73 1609
total: 36 216 total: 169 2197

?- sdd(P,K), sdd(Q,L), pairwise_sdd(P,Q,J),K>J, L>J,
nl,write(P:K;Q:L->J),fail.
[[+, -, +], [-, +, +]]:3;[[+, -, -], [-, +, -]]:3->2
[[+, +, -], [-, +, +]]:3;[[+, -, -], [-, -, +]]:3->2
[[-, +, +], [+, -, +]]:3;[[-, +, -], [+, -, -]]:3->2
[[+, +, -], [+, -, +]]:3;[[-, +, -], [-, -, +]]:3->2
[[-, +, -], [-, -, +]]:3;[[+, +, -], [+, -, +]]:3->2
[[+, -, -], [-, -, +]]:3;[[+, +, -], [-, +, +]]:3->2
[[-, +, +], [+, +, -]]:3;[[-, -, +], [+, -, -]]:3->2
[[+, -, +], [+, +, -]]:3;[[-, -, +], [-, +, -]]:3->2
[[-, -, +], [-, +, -]]:3;[[+, -, +], [+, +, -]]:3->2
[[+, -, -], [-, +, -]]:3;[[+, -, +], [-, +, +]]:3->2
[[-, -, +], [+, -, -]]:3;[[-, +, +], [+, +, -]]:3->2
[[-, +, -], [+, -, -]]:3;[[-, +, +], [+, -, +]]:3->2
No
?- sdd(P,K),sdd(Q,L),pairwise_sdd(P,Q,J),J=1,K>1,L>1.
No

Figure 5: Automated proof of the Proposition 3.

formation (i.e., the clustering of patially defined SWF s) based on decisiveness-strengthen
connection is simulated.

For each subset of profiles, the possible patterns of value-assignment, or equally the
number of branching, in the partial aggregation function confined to these profiles is called
the degree of self-(in)decisiveness. Let sdd(P) denotes the degree of self-decisiveness for
a coalition, a subset of profiles, P. And the coalition consists of all profiles P such that
sdd(P) = K is denoted by sd(K), K = 1, 2, ..., which are experimentaly verified (see Table
3). For example, for every member P of sd(1), P has a sdd value 1, namely there is no
room for choice. If P has a sdd value 2, bifurcation is possible.

A coalition of those profiles may be considered mutually beneficial, or reciprocal if you
will, if both the participants simultaneously can reduce sdd(P). Actually, there are a very
limited number of such two-element reciprocal coalitions.

Proposition 3 There are only pairs of sd(3) profiles for the linear domain, and of sd(5)
profiles for the transitive domain, which can reciprocally reduce their indecisiveness.

Figure 5 shows a small experimentation which proves the above proposition for the
two-agent linear domain under dp mode(2).

The following proposition is the cololary of Proposition 1 and Proposition 2.

Proposition 4 The sd(3) profiles, and the sd(5) profiles, is sufficient to prove the Arrow-
type dictatorial result in the binary decomposed form of the aggregation for linear domain,
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and for transitive domain, respectively.

Next, we will define the PSF procedures. These procedures also simulate the cube-
first acceleration method partially. In fact, in the early step of the PSF selects a pair of
vertices, i.e., a single-pair-agreed profiles in the cube accompanied with another vertex in
its complementary (virtual) cube. The outline of the common procedure are as follows:

Procedure 1 (PSF-Base). Based on the above reciprocal pairs, remaining profiles are se-
quentially connected to one of the previous coalitions and grown up (or merged) to a complete
(or maximal) list of profiles.

Two types of the additional PSF procedure have been experimented according to the
SCLP approach.

Procedure 2 (PSF-FER). In the first procedure takes a surefooted fork. First, merge two
disjoint pairs (or coalitions). Repeat this until there is no disjoint partnership. Then a sort
of Satisficing criteria a la Herb Simon, which governs evolving the set of profiles and the
partial SWF defined over them, is adopted. That is, at first the reservation level sdd value
starts from 1 and gradually increase to select a newcomer at the first contact. We call this
the First Encounter Rule (FER).

Procedure 3 (PSF-MCR). The second procedure goes more greedy. While being similar
to the FER it starts from the reciprocal pairs as the evolutive bases, it departs from the FER
and grows up faster under the Merge and Clustering Rule (MCR). That is to repeat merge
process consistently for a pair of parties such that they have non empty intersection for the
partial SWF without any contradictory assignment of the SWF values.

The computational counterpart for the PSF-Base, PSF-FER, PSF-MCR is psf base,
psf fer, and psf mcr respectively.

As already mentioned, the time improvement is unclear compared to using the CFM
profiles, our concern might be focused on the measurement of how these profile sequence
evolve and are differ from the one which CFM computes.

For example, a PSF-FER experiment of the n=2, transitive domain has been evoled up
to 169 rofiles at last. And this process is a survival. The resulting profile list can produce
(complete) dictatorial SWFs in about 12 seconds. For n=3, linear domain, this PSF-FER
brought about similar process and stopped in 216 steps remains a single complete profile
list. It takes about 7 seconds to prove the theorem.

As for PSF-MCR, evolution is not complete and many clusters remain during the ex-
perimentation. For n=2, transitive domain, starting from the 13 clusters of sd(5) members
with each partner, two steps to merge these clusters. The first merge step produces 13
new clusters consist of twelve 22-profile and one 8-profile. The result second merge step is
diversed from the min =22 to max=102, however the total number of clusters is same as
the previous step.

Table 4 summarizes the experimental results on the correlation coefficients across these
procedures. The sequence of numbers in the PSF-FER profile list is negatively coorelated
(coefficient -0.5 - -0.6) with the naive all rr, and has no correlation (almost 0 coefficient)
with the list of the CFM. The performance distribution of the resulting clusters of the
PSF-MCR profile list, for n=3, transitive domain, which appropriately expanded into the
complete SWF domain, are almost same as the other PSF procedures and the CFM, but
the premature list is often better than the last products about one second. The sequence
of numbers in the PSF-MCR profile list has almost no correlation with the CFM, and has
weak negative coorelation (coefficient -0.25) with the naive all rr.
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Table 4: Summary of the PSF experimentation and the correlation coefficients between the
profiles generated by different procedures.
procedure model max length corr CFM corr original SCLP
PSF-FER (n = 2, l, l) 36 0.00 -0.54
PSF-FER (n = 2, t, t) 169 0.00 -0.61
PSF-MCR (n = 2, t, t) 102 0.00 -.249

5 Conclusion

As the result of experimenation shown in Table 4 shows, these two method both can bring
about profile lists which have the great computational advantage to us to compute SWF s
than the original SCLP.

However, their advantage is not clear when they are compared with the CFM introduced
in the preceding section. A list resulted in by the PSF profile evolving process is not superior
to the CFM, with respect to the computation time as a whole.

This may be caused by using a list in the predicate swf. In other words, the PSF can be
considered more favorable from the viewpoint of parallel computing in order to prove the
Arrow-type thorem that swf is always dictatorial (or oligarchical).

Lastly, the experimental environment is as follows: machine: VGN-FS (Sony Corp.);
OS: MS Windows XP Home Edition 2002 SP3; processor: Intel Celeron M, 1.40 GHz;
memory: 1.99 GB RAM; language: PROLOG (SWI-Prolog Version 5.0.9); program name:
[gprf06,cswf08,fcswf0].
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