You selected coop.pl
headline:-
write('% ------------------------------------------- %'),nl,
write('% simulating cooperative games by Prolog. %'),nl,
write('% ------------------------------------------- %'),nl,
h0.
h0:-
write('% game(G,value,X,P):- values (worth) of game '),nl,
write('% core(G,C,P):- coa '),nl,
write('% imputation(G,C,P):- imputation '),nl,
write('% coalitionally_complain(G,C,Z,B):- complain (excess) '),nl,
write('% is_more_acceptable_than(G,A,A1,Z,Z1):- so '),nl,
write('% nucleolus(G,A):- so '),nl,
write('% coalition_formation(G,[J|Z],Y/N,[A|B],P):- so '),nl,
write('% shapley(G,N,V):- so '),nl,
write('% h0:- this.'),nl.
me:-
write('% file: coop.pl.'),nl,
write('% created: 7 Feb 2003.'),nl,
write('% modified: 9 Feb 2003.'),nl,
write('% author: Kenryo INDO (Kanto Gakuen University) '),nl,
write('% url: http://www.us.kanto-gakuen.ac.jp/indo/front.html'),nl.
reference:-
write('% references: '),nl,
write('% Muto, S. (2001). An Introduction to Game Theory.'),nl,
write('% Nikkei Bunko. pp.161-194.(Japanese) '),
write('% Aumann, R.J.(1989). Lectures on Game Theory. '),nl,
write('% Stanford University. [T. Maruyama and H. Tateishi, '),nl,
write('% "Game Ron no Kiso", Keiso Shobo, 1991. (translated in Japanese) ]'),
nl.
:- headline.
%
% ------------------------------------------------- %
% examples of cooperative games
% with transferable utilities or side payments
% ------------------------------------------------- %
% these examples below cited from Muto(2001), pp.165-8.
% the game c2 with minor modifications in the values
% of its characteristic function.
%
% game c1: a majority vote.
game(c1,
form(characteristic),
players([a,b,c]),
coalitions([[],[a],[b],[c],[a,b],[b,c],[a,c],[a,b,c]])).
game(c1,value,[],0).
game(c1,value,[a],0).
game(c1,value,[b],0).
game(c1,value,[c],0).
game(c1,value,[a,b],1).
game(c1,value,[b,c],1).
game(c1,value,[a,c],1).
game(c1,value,[a,b,c],1).
%
% game c2: selling the asset of a to whom, b or c?
game(c2,
form(characteristic),
players([a,b,c]),
coalitions([[],[a],[b],[c],[a,b],[b,c],[a,c],[a,b,c]])).
game(c2,value,[],0).
game(c2,value,[a],0).
game(c2,value,[b],0).
% coa is empty if modified as below
%game(c2,value,[a],1).
%game(c2,value,[b],1).
game(c2,value,[c],0).
game(c2,value,[a,b],2).
game(c2,value,[b,c],0).
game(c2,value,[a,c],5).
game(c2,value,[a,b,c],5).
%
% game c3: cost-sharing problem among 3 cities.
game(c3,
form(characteristic),
players([a,b,c]),
coalitions([[],[a],[b],[c],[a,b],[b,c],[a,c],[a,b,c]])).
game(c3,value,[],0).
game(c3,value,[a],0).
game(c3,value,[b],0).
game(c3,value,[c],0).
game(c3,value,[a,b],6).
game(c3,value,[b,c],8).
game(c3,value,[a,c],0).
game(c3,value,[a,b,c],20).
% game c0: cost-sharing problem among 3 cities.
game(c0,
form(characteristic),
players([a,b]),
coalitions([[],[a],[b],[a,b]])).
game(c0,value,[],0).
game(c0,value,[a],0).
game(c0,value,[b],0).
game(c0,value,[a,b],1).
%
% ------------------------------------------------- %
% imputation, and core
% ------------------------------------------------- %
%
col_rat_outcome(G,players(N),payoff(A)):-
var(A),
game(G,form(characteristic),players(N),coalitions(C)),
member(N,C),
game(G,value,N,V),
length(N,LN),
allocation(LN,V,A).
col_rat_outcome(G,players(N),payoff(A)):-
\+ var(A),
game(G,form(characteristic),players(N),coalitions(C)),
length(N,LN),
length(A,LN),
member(N,C),
game(G,value,N,V),
\+ (member(X,A), X < 0),
sum(A,V).
individually_complain(G,J/N,RJ-AJ=Z/A,X):-
col_rat_outcome(G,players(N),payoff(A)),
nth1(K,N,J),
nth1(K,A,AJ),
game(G,value,[J],RJ),
Z is RJ - AJ,
(AJ < RJ -> X = yes; X = no).
imputation(game(G),players(N),payoff(A)):-
% collectively (i.e.,group) rational outcome.
col_rat_outcome(G,players(N),payoff(A)),
% individual rationality.
\+ individually_complain(G,_J/N,_RJ-_AJ=_Z/A,yes).
excess_of_coalition(G,Y/N,RY-AY=Z/A,X):-
coalitionally_complain(G,Y/N,RY-AY=Z/A,X).
coalitionally_complain(G,Y/N,RY-AY=Z/A,X):-
imputation(game(G),players(N),payoff(A)),
game(G,value,Y,RY),
Y \= N,
selected_sum(Y/N,_B/A,AY),
Z is RY - AY,
(AY < RY -> X = yes; X = no).
core(game(G),players(N),payoff(A)):-
imputation(game(G),players(N),payoff(A)),
% coaltional rationality.
\+ coalitionally_complain(G,_Y/N,_RY-_AY=_Z/A,yes).
%
% sample execution
%------------------------------------------------------
/*
?- core(game(c2),B,C).
B = players([a, b, c])
C = payoff([5, 0, 0]) ;
B = players([a, b, c])
C = payoff([4, 0, 1]) ;
B = players([a, b, c])
C = payoff([3, 0, 2]) ;
B = players([a, b, c])
C = payoff([2, 0, 3]) ;
Yes
?- coalitionally_complain(c3,B/[a,b,c],_=Z/[6,0,14],no).
B = []
Z = 0 ;
B = [a]
Z = -6 ;
B = [b]
Z = 0 ;
B = [c]
Z = -14 ;
B = [a, b]
Z = 0 ;
B = [b, c]
Z = -6 ;
B = [a, c]
Z = -20 ;
No
?-
*/
%
% ------------------------------------------------- %
% Schmeidler(1969)'s nucleolus
% ------------------------------------------------- %
%
% nucleolus:
% lexicographically minimizing the sorted complaining vector.
complain_vector(G,A,Zs):-
imputation(game(G),players(N),payoff(A)),
findall(Z,coalitionally_complain(G,_B/N,_=Z/A,_),Zs).
complain_vector_indexed(G,A,Bs):-
imputation(game(G),players(N),payoff(A)),
findall((B,Z),coalitionally_complain(G,B/N,_=Z/A,_),Bs).
sorted_complain_vector(G,A,Z):-
complain_vector(G,A,S0),
asort(S0,S),
reverse(S,Z).
is_more_acceptable_than(G,A,A1):-
is_more_acceptable_than(G,A,A1,_,_).
is_more_acceptable_than(G,A,A1,Z,Z1):-
sorted_complain_vector(G,A,Z),
sorted_complain_vector(G,A1,Z1),
Z @< Z1.
nucleolus(G,A):-
imputation(game(G),players(_N),payoff(A)),
\+ is_more_acceptable_than(G,_A1,A).
%
% sample execution
%------------------------------------------------------
/*
?- is_more_acceptable_than(c3,[12,4,4],[6,0,14],B,C).
B = [0, 0, -4, -4, -10, -12, -16]
C = [0, 0, 0, -6, -6, -14, -20]
Yes
?- nucleolus(A,B).
A = c1
B = [1, 0, 0] ;
A = c1
B = [0, 1, 0] ;
A = c1
B = [0, 0, 1] ;
A = c2
B = [3, 0, 2] ;
A = c3
B = [6, 7, 7] ;
No
?-
*/
%
% ------------------------------------------------- %
% Shapley(1953)'s value
% ------------------------------------------------- %
%
contribution(G,J,X,Y,A):-
game(G,form(characteristic),players(_N),coalitions(C)),
member(Y,C),
game(G,value,Y,VY),
member(J,Y),
subtract(Y,[J],X),
game(G,value,X,VX),
A is VY - VX.
coalition_formation(G,[],[]/N,[],0):-
game(G,form(characteristic),players(N),coalitions(_C)).
coalition_formation(G,[J|Z],Y/N,[A|B],P):-
coalition_formation(G,Z,X/N,B,_Q),
(X=N -> (!,fail);true),
contribution(G,J,X,Y,A),
game(G,value,Y,P).
contribution_to_coalition_formation(G,J,X,K,VJ/V):-
coalition_formation(G,X,N/N,VX,V),
nth1(K,X,J),
nth1(K,VX,VJ).
shapley(G,J/N,Ps,SV):-
game(G,form(characteristic),players(N),coalitions(_C)),
member(J,N),
bagof(VJ,
X^K^contribution_to_coalition_formation(G,J,X,K,VJ/_V),
Ps),
length(Ps,L),
sum(Ps,B),
SV is B / L.
shapley(G,N,V):-
bagof(SV,
J^Ps^shapley(G,J/N,Ps,SV),
V),
(
imputation(game(G),players(N),payoff(V))
->true
;
write(not_an_imputation(V))
).
%
% sample execution
%------------------------------------------------------
/*
?- shapley(A,B,C),col_rat_outcome(A,_,payoff(C)).
A = c1
B = [a, b, c]
C = [0.333333, 0.333333, 0.333333] ;
A = c2
B = [a, b, c]
C = [2.83333, 0.333333, 1.83333] ;
A = c3
B = [a, b, c]
C = [5, 9, 6] ;
*/
%
% ----------------------------------------------------------- %
% Arithmetic and so on including probabilistic operators
% ----------------------------------------------------------- %
%
% sum
% ----------------------------------------------------------- %
sum([],0).
sum([X|Members],Sum):-
sum(Members,Sum1),
%number(X),
Sum is Sum1 + X.
%
% product
% ----------------------------------------------------------- %
product([],1).
product([X|Members],Z):-
product(Members,Z1),
%number(X),
Z is Z1 * X.
%
% weighted sum
% ----------------------------------------------------------- %
product_sum([],[],[],0).
product_sum([P|Q],[A|B],[E|F],V):-
length(Q,N),
length(B,N),
product_sum(Q,B,F,V1),
E is P * A,
V is V1 + E.
%
% selected sum
% ----------------------------------------------------------- %
selected_sum(Y/N,B/A,RX):-
findall(AJ,
(
member(J,Y),
nth1(K,N,J),
nth1(K,A,AJ)
),
B),
sum(B,RX).
%
% projected sum
% ----------------------------------------------------------- %
projected_sum(M,A,Cols):-
index_of_tuple(M,B,Cols),
sum(B,A).
%
% allocation
% ----------------------------------------------------------- %
allocation(N,A,[X|Y]):-
allocation(N,A,A,[X|Y]).
allocation(0,_,0,[]).
allocation(N,A,B,[X|Y]):-
integer(A),
length([X|Y],N),
allocation(_N1,A,B1,Y),
% N1 is N - 1,
% sum(Y,B1),
K is A - B1 + 1,
length(L,K),
nth0(X,L,X),
B is B1 + X.
% ------------------------------------------------- %
% some (local) utilities for probabilistic operations
% ------------------------------------------------- %
precision(100).
make_a_prob(N0,P):-
number(P),
precision(N0),
P =< 1,
P >= 0.
make_a_prob(N0,P):-
var(P),
precision(N0),
N1 is N0 + 1,
length(L,N1),
nth0(K,L,K),
P is K / N0.
quotient_prob(user,R, P):-
(var(R)->read(R1);true),
(
R1 = Q1/Q0
->
R = Q1/Q0
;
quotient_prob(user,R, P)
),
P is R.
%
conditional_event_probability(E,H,P):-
event(E),
event(H),
H \= [],
intersection(E,H,F),
probability_of_event(_,H,P0),
(P0 = 0 -> (nl,write('-- measure 0 --'),nl,fail);true),
probability_of_event(bp1,F,P1),
P is P1 / P0.
%
% probability by using allocation
% ----------------------------------------------------------- %
probabilities(0,[]).
probabilities(N,[X|Y]):-
integer(N),
length([X|Y],N),
allocation(N,100,[X|Y]).
%
% any ratio (weight) can be interpreted into a prob.
scale(W,1/Z,P):-
findall(Y,(nth1(_K,W,X),Y is X/Z),P).
probabilities(W,N,P):-
length(W,N),
sum(W,Z),
scale(W,1/Z,P).
%
make_a_prob(P,base(M),steps(L)):-
var(P),
length(P,M),
allocation(M,L,W),
probabilities(W,M,P).
make_a_prob(P,base(M),_):-
\+ var(P),
length(P,M),
\+ (
member(P1,P),
(
var(P1);
P1 > 1;
P1 < 0
)
),
sum(P,1).
%
% expected value
% ----------------------------------------------------------- %
expected_value(W,A,E/100):-
length(A,N),
probability(W,N,P),
product_sum(P,A,_,E).
%
% ----------------------------------------------------------- %
% Utilities for list operations
% ----------------------------------------------------------- %
%
% index for a tuple.
% ----------------------------------------------------------- %
% 1) only mention for a direct product of sets.
index_of_tuple(B,A,Index):-
\+ var(B),
\+ var(A),
length(B,LN), % base sets
length(A,LN),
length(Index,LN),
findall(L,
(
nth1(K,B,BJ), %write(a(K,B,BJ)),
nth1(L,BJ,AJ),%write(b(L,BJ,AJ)),
nth1(K,A,AJ) %,write(c(K,A,AJ)),nl
),
Index).
index_of_tuple(B,A,Index):-
\+ var(B),
\+ var(Index),
var(A),
length(B,LN), % base sets
length(Index,LN),
length(A,LN),
findall(AJ,
(
nth1(K,B,BJ),
nth1(K,Index,L),
nth1(L,BJ,AJ)
),
A).
%
% descending/ascending natural number sequence less than N.
% ----------------------------------------------------------- %
dnum_seq([],N):-N<0,!.
dnum_seq([0],1).
dnum_seq([A|Q],N):-
A is N - 1,
length(Q,A),
dnum_seq(Q,A).
anum_seq(Aseq,N):-dnum_seq(Dseq,N),sort(Dseq,Aseq).
%
% inquire the goal multiplicity
% ----------------------------------------------------------- %
sea_multiple(Goal,Cond,N,M):-
Clause=..Goal,
findall(Cond,Clause,Z),length(Z,N),sort(Z,Q),length(Q,M).
%
bag0([],_A,0).
bag0([C|B],A,N):-
length([C|B],N),
bag0(B,A,_N1),
member(C,A).
zeros(Zero,N):-bag0(Zero,[0],N).
ones(One,N):-bag0(One,[1],N).
%
% subset_of/3 : subset-enumeration
% ----------------------------------------------------------- %
subset_of(A,N,As):-
length(As,L),
length(D,L),
list_projection(D,As,B),
length(B,N),
sort(B,A).
%
% a sequence of binary choice for a list:
%--------------------------------------------------
list_projection([],[],[]).
list_projection([X|Y],[_A|B],C):-
X = 0,
list_projection(Y,B,C).
list_projection([X|Y],[A|B],[A|C]):-
X = 1,
list_projection(Y,B,C).
%
% sort without removal of duplicates
%--------------------------------------------------
asort(A,B):-
sort(A,C),
bagof(CK,
J^K^(
nth1(J,C,CK),
nth1(K,A,CK)
),
B).
%
% ----------------------------------------------------------- %
% Utilities for outputs
% ----------------------------------------------------------- %
%
% write and new line.
% ----------------------------------------------------------- %
wn(X):-write(X),nl.
%
% output to file.
% ----------------------------------------------------------- %
tell_test(Goal):-
open('tell.txt',write,S),
tell('tell.txt'),
Goal,
current_stream('tell.txt',write,S),
tell(user),wn(end),
close(S).
%
%end
return to front page.