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Abstract. This paper presents a simple PROLOG implementation for social 

choice problem. A model of society consists of alternatives, agents, and 

preferences of agents. Social welfare function (SWF) organizes different 

preferences among agents into a social preference. Kenneth J. Arrow (1963) 

proved that any SWF which satisfies a set of conditions of the IIA, of the 

Pareto, and of the unrestricted domain should be dictatorial. My PROLOG 
program for 3 alternatives and 2 agents proves the Arrow’s impossibility 

theorem. With a minor modification, a version of the theorem without the 

Pareto condition firstly proved by Wilson (1972) also can be computed by using 

my program. 
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1. Introduction 

Social choice theory deals with the following problem: Suppose we have a group 

of agents facing a number of alternatives collectively; each agent has a preference 

over which alternative is chosen individually. Which alternatives should the group as 

a whole adopt?   

Examples of this problem are familiar from everyday life: Let us suppose that a 

class has a choice between three possible time slots for the TA's office hours, say, 

either morning (m), afternoon (n), or evening (e). Each student has a preference with 

respect to one or the other. The instructor has to balance these preferences to 

determine a time slot.  

Kenneth J. Arrow (1963) proved such a mission is impossible if he/she can not 

suppose any restriction on the preference of students. More precisely, there is no 

social welfare function (SWF) which satisfies simultaneously a set of conditions, (U), 

(P), (IIA), and not (D). The intuitive contents of the 4 conditions are as follows.  

− Unrestricted domain (U): Every logically possible preference never to be inhibited. 

− Pareto condition (P): Unanimity. If they both prefer X to Y then X must be chosen. 

− Independence of irrelevant alternatives (IIA): For any preference if society prefers 

X to Y, so does unless someone changes his/her preference between X and Y.    

− Dictatorship (D): Society prefers X to Y whenever a same single member does do. 
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In other words, if there are at least three alternatives, any social choice rule which 

satisfies (P) and (IIA) must be dictatorial (D) assuming all logically possible 

preferences permitted (Arrow (1963), pp.51-9, pp.97-100; Sen (1995), p.4). 

PROLOG (i.e., programming in logic) is familiar to computer scientists, especially 

in AI community. By using it, the logical content of the impossibility theorem may be 

translated into a rule (a Horn-clause), 

(rule A)  

is_Arrovian_SWF(Swf):- 

   is_logically_possible(Swf), 

   is_Pareto_consistent(Swf), 

   is_IIA_consistent(Swf), 

not( is_dictatorial(Swf) ). 

The code I wrote in reality is of recursion over possible profiles (in section 3). 

Nevertheless a rule below may indicate the declarative meaning of that theorem. 

Specifically since the set of conditions {(not D), U, IIA, P} is unsatisfiable by 

Arrow’s theorem. The theorem can be equivalently modeled as follows. 

(rule B)  

is_dictatorial(Swf):- 

   is_logically_possible(Swf), 

   is_Pareto_consistent(Swf), 

   is_IIA_consistent(Swf). 

 PROLOG system successfully prove the condition (D), in the left hand side (“the 

head” of the clause) if the conjunctive (U), (P), and (IIA) in the right hand side (“the 

body” of the clause) are satisfied simultaneously. 

The proof procedure such as stated above is called “the resolution principle” a 

computational realization of syllogisms. Then the system attempts to a “pattern 

match” to the SWF, a variable term in above code, generating possible social welfare 
functions modeled by the conjunctive by try and error (i.e., the backtracks). Rule A 

should have failed. The rule B can succeed with a matched term (or possibly keep up 

until it can not prove the cases any more). 

However, because of the exponentiation, it is impossible to prove by means of 

naive “generate and test” method. Even in a small case of, for example, 2 agents and 3 

alternatives, there are 6 possible rankings for strict ordering model, and 6
36
 possible 
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candidates of SWF defined over 6
2
 possible profiles. In weak order case, there are 13 

possible rankings permitting tie, and 13
169
 possible candidates for the SWF defined 

over 13
2
 possible profiles. Precisely, for the case of n agents and m alternatives, there 

are (m!
 n
)th power of m! candidates in strict preferences.  

The impossibility theorem provides good exercise to write efficient code with 

recursion. The code I made actually is of the case of 2 agents with 3 alternatives. It 

may be extended for larger, but the complexity is exponential order. It seems a 

challenging work to design a simple proof for the theorem automatically. 

The paper organizes as follows. Next section shows an example of PROLOG 

modeling for social choice problem. In Section 3 our system can provide an 

automated proof of the Arrow’s impossibility theorem for the case of 3 alternatives 

and 2 agents. Further, with minor modification we have a generalized impossibility 

result without the Pareto condition firstly proven by Robert Wilson (1972) in Section 

4. Section 5 argues a visualization of the process of proof with a version of my 

program in binary relations. Section 6 mentions the related research fields. Last 

section concludes.  

2. Logic programming for social choice problem 

In this section I will show how PROLOG can be applied to model a social choice 

problem by using the example in previous section. For the ISO-standard grammar and 

system predicates, see Cocksin and Mellish (2003). First of all, I model the 

alternatives and the individuals, next the individual or social rankings over the 

alternatives. I conclude with a possible construction for the social welfare function. 

2-1. individual preferences 

Now, suppose two students, Alice and Bob, who are prefer morning to evening, 

and evening to morning respectively. Other pairs of comparison are same for both 

students, say, morning to afternoon, and afternoon to evening. 

In PROLOG, the set of alternatives, the members of the society, and the preferences 

of the members respectively may be modeled as the following facts. 

alternatives( [m,a,e]). 

members_of_society( [alice,bob]). 

preference( alice, [(m,e),(m,a),(a,e)]). 

preference( bob, [(e,m),(m,a),(a,e)]). 

Traditionally the rational (individual/social) choice theory assumes that a complete, 

transitive, and anti-symmetric for strict preference models. So we can consistently use 

lists for the basic representation of preferences if the agent’s preference is rational in 

this sense. For the Alice’s preference, it can be stated by using, [m, a, e], a list as 
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ranking( alice, [m,a,e]). 

While Bob’s preference obviously circulates by transitive reasoning, so it can not 

be represented as a list. Instead, suppose the Bob’s preference 

preference( bob, [(e,m),(a,m),(a,e)]). 

Or equivalently, 

ranking( bob, [a,e,m]). 

Weak preferences can be handled by minor modifications, by adding 3-1 elements 

list which signifies the indifferences. But we will focus on strict cases in this paper for 

the sake of simplicity.  

In summary, the preferences of Alice and Bob are coded simply as follows. 

ranking( alice, [m,a,e]). 

ranking( bob, [a,e,m]). 

2-2. binary relations 

Next I show a rule with variables to reproduce the binary preference relations from 

the rankings. 

prefer_x_to_y( J, X, Y, R):- 

ranking( J, R), 

x_precedes_y_in_list( X, Y, R). 

x_precedes_y_in_list( X, Y, R):- 

append( _,[X|Z],R), 

member( Y, Z). 

A variable in PROLOG starts with a capital letter which will be matched during the 

query, or with an underscore when anonymously used. 

2-3. reasoning about preference 

The PROLOG system acts as if proving a theorem, or seeking a given goal and 

solving a set of constraints. Figure 2-1 shows such an example in the context of 

integer domain.  
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Figure 2-1. The goal is to find a pair of integers (X, Y) such that X is in {1, 2, 3}, Y is 

in {3, 4, 5} and the sum of squares is 13 or 17. 

 

 

 

 

Figure 2-2. What (Y) is not preferred to morning by Alice who has ranking R. 

 

It seeks a clause which has the negation of goal predicate as the head and produces 

sequentially the subsidiary goals, predicates in the body and repeats until there is no 

other solution. Figure 2-2 shows a sample execution of reasoning in previous social 

choice problem, the goal is a prefer_x_to_y/4 and the subsidiary goals are a 

ranking/2 and an x_precedes_y_in_list/3. 

I would like to interpret the query in Figure 2-2 such like as that “What (Y) is not 

preferred to morning by Alice who has ranking R.” And the output of PROLOG 

system that “I found the case where her ranking is m>a>e and either ‘afternoon’ or 

‘evening’ is preferred.” Such a dialog can be simulated easily, but I omit because of 

limited space. Subsequently, I verbalize a proof for the impossibility theorem in 

Section 3 and Appendix A. 

2-4. logically possible preferences 

It may be beneficial to the later analyses that in advance we prepare the 6 logically 

possible rankings in PROLOG database with numberings. 
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possible_ranking_0([m,a,e], r(1)). 

possible_ranking_0([m,e,a], r(2)). 

possible_ranking_0([a,m,e], r(3)). 

possible_ranking_0([a,e,m], r(4)). 

possible_ranking_0([e,m,a], r(5)). 

possible_ranking_0([e,a,m], r(6)). 

It is noteworthy that if some clauses were removed, we would have a model of 

restricted domain. 

Then we rewrite a rule for possible rankings of the individual agent and the 

society. 

possible_ranking( J, R):- 

members_of_society( N), 

member( J,N), 

possible_ranking_0( _, r(R)). 

Next we can write a rule for possible profile of individual rankings. 

possible_ranking_profile((R1,R2)):- 

possible_ranking( alice,R1), 

possible_ranking( bob, R2). 

2-5. social welfare function  

A social welfare function (SWF) selects a ranking for each possible profile of 

rankings of all the member of society. Next I give a dictatorial rule (to Alice) at some 

profile in previous example.  

dictatorial_swf_for_alice( R1, R2, R1):- 

ranking( alice,R1), 

ranking( bob, R2). 
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But the instructor would think a non-dictatorial way, for example, by a majority 

vote or unanimity rule. However, Arrow’s theorem tells us that he/she can never 

success unless violating the conditions referred in introductory section.  

A code which generates the SWF recursively is such a below.  

try_SWF_assignment_1( [], []). 

try_SWF_assignment_1( [(R1,R2)->R|F], [(R1,R2)|Q]):- 

try_SWF_assignment_1( F, Q), 

possible_ranking( society, R). 

is_logically_possible_SWF( F):- 

findall( P, possible_ranking_profile(P), Q), 

try_SWF_assignment_1( F, Q). 

PROLOG programmers frequently use recursions in order to compute iteratively, 

instead of For or While statements in other conventional programming languages 

which are not allowed in the standard PROLOG language. 

2-6. display in tabular form  

Next code displays the generated SWF in a table format without labels or lines.  

show_swf(F):- 

nl, 

forall( 

    bagof( S, Q^member((_,Q)->S,F), L), 

    (nl,write(L)) 

). 

The user may easily modify the table into a specified form. The code is left as an 

exercise for the reader. 
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3. Automated proof of the impossibility theorem 

This section models firstly the Pareto condition and the IIA condition which 

constraint on the SWF. Then I modify the rule to generate SWF recursively 

incorporates these constraints. Lastly, I show an automated proof of the Arrow’s 

theorem.  

3-1. the Pareto condition 

The Pareto condition (P) can be translated into a rule in PROLOG such as 

is_Pareto_consistent( (R1,R2)->R ):- 

   not( 

     violates_Pareto_condition( _,(R1,R2)->R) 

   ). 

 

violates_Pareto_condition((X,Y),(R1,R2)->R):- 

   prefer_x_to_y( X, Y, R1), 

   prefer_x_to_y( X, Y, R2), 

   possible_ranking_0( _, R), 

   not( prefer_x_to_y( X, Y, R)). 

 

That is, if the rankings of students are same, also the society is.  This is not exact 

literally for the condition, since originally stated in binary form. Indeed it is rather 

weak, but the consequence of the theorem is same.  

3-2. the IIA condition 

The condition (IIA) informally means such as “What society prefers from a pair of 

alternatives always can be determined irrelevant to what a true preference profile is 

except for that pair.”  

Firstly, I rewrite rules for binary preferences and their profiles for the simplicity of 

that for the condition (IIA). 

prefer_x_to_y_B( (X, Y), R, B):- 

   distinct_pair(X,Y), 

   (prefer_x_to_y( X, Y, R)->B=1;B=0). 
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binary_choice_profile( (X, Y), (R1,R2), (B1,B2)):- 

   prefer_x_to_y_B( (X, Y), R1, B1), 

   prefer_x_to_y_B( (X, Y), R2, B2). 

 

By next rule PROLOG system try to catch contradicted pairs of alternatives at a 

profile given attempting assignments to a candidate SWF. 

violates_IIA_condition( (X, Y), (P, Q)-> R, F):- 

   not( F=[]), 

   member( (P1,Q1)-> S, F), 

   binary_choice_profile( (X, Y), (P,Q), B), 

   binary_choice_profile( (X, Y), (P1,Q1), B), 

   not( binary_choice_profile( (X,Y), (R,S), (A,A))). 

Then a test of the (IIA) for a given SWF candidate may be written such a rule 

below. 

is_IIA_consistent( (R1,R2)->R, F):- 

   not(( 

     violates_IIA_condition( _, (R1,R2)->R, F) 

   )). 

But this code is not useful in order to generate the SWF because of the complexity, 

so we should revise it. Please note that if we confine the possible_ranking_0/2 

to only 2 alternatives the IIA is vacuously satisfied  

3-3. coping with the complexity 

Thus, the combinatorial nature just fit the logic programming. However, 

complexity problem arises. Even in this small case there are 6^6^2 possible 

candidates of SWF (i.e., the 6 possible rankings over the 36 possible profiles of 

rankings).  

In order to prove, or disprove, the Arrow’s theorem, you never adopt a naïve 

generate-and-test method, so I modify previous rule for SWF by incorporating above 

constraints checking both (P) and (IIA) accordingly.  

try_SWF_assignment_2( [], []). 

try_SWF_assignment_2( [(R1,R2)->R|F], [(R1,R2)|Q]):- 
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   try_SWF_assignment_2( F, Q), 

   possible_ranking_0( _, R), 

   is_Pareto_consistent( (R1, R2)-> R), 

   is_IIA_consistent( (R1, R2)->R, F). 

is_Arrovian_SWF( F):- 

   findall( P, possible_ranking_profile(P), Q), 

   try_SWF_assignment_2( F, Q). 

Therefore we can rule out violations to the Arrovian SWF cumulatively. In order to 

proof the theorem, simply type the following query at a prompt (and an enter key) 

which results in the two dictatorial SWFs (see Figure 3-1). 

?- is_Arrovian_SWF(A), 

show_swf(A), nl,write('---'),fail. 

Indeed, the code will lightly produce only dictatorial SWFs either for Alice or Bob. 

In the upper table form in Figure 3-1, the Bob’s dictatorial SWF is shown which has 6 

rows each of which is the ranking of him. As for the lower table form, the Alice’s 

dictatorial SWF consists of columns each of which is just her ranking. (Appendix A 

shows the verbalization of the proof.) There is no room for possibility of democratic 

decision making, so the impossibility theorem is proven. 

 

 

 

Figure 3-1. A proof of the Arrow’s theorem 
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4. Impossibility without the Pareto condition 

A version of the Arrow’s theorem without the Pareto condition but under weak 

citizen sovereignty condition can be proven. The result firstly proved by Wilson 

(1972) for weak preferences.  

− Citizen sovereignty (CS): Every logically possible ordered pair should be included 

in the SWF at least at one preference profile. 

4-1. the Wilson’s theorem 

For strict preferences, since total indifference (i.e., the null SWF) is ruled out, there 

only exists either dictatorial or anti-dictatorial. A proof for the theorem and the code 

can be readily obtained as follows.  

try_SWF_assignment_4( [], []). 

try_SWF_assignment_4( [(R1,R2)->R|F], [(R1,R2)|Q]):- 

   try_SWF_assignment_4( F, Q), 

   possible_ranking_0( _, R), 

   is_IIA_consistent( (R1, R2)->R, F). 

 

is_almost_Arrovian_SWF( F, K):- 

   findall( P, possible_ranking_profile(P), Q), 

   try_SWF_assignment_4( F, Q), 

   setof( R, P^member( P->R, F), S), 

   length( S, K). 

 

After a reload with the code above, the proof will be obtained by following 

command. The results are shown as Figure 4-1. 

 

?- is_almost_Arrovian_SWF(A,6), 

show_swf(A), nl,write('---'),fail. 
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Figure 4-1. A proof of the Wilson’s theorem 

4-2. the Wilson’s theorem revisited 

Now, we have a result which summarizes the experimentations using above code 

for varying K=1, 2, …, 6. K denotes the number of distinct ordered pairs included in 

the SWF. To do this, I added a rule, test_Wilson/1, but I omit here. 

 

111111111111111111111111111111111111 

222222222222222222222222222222222222 

333333333333333333333333333333333333 

444444444444444444444444444444444444 

555555555555555555555555555555555555 

666666666666666666666666666666666666 

6:swfs found at level:1 

Figure 4-2 (a). A proof of a version of Wilson’s theorem: K=1 
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Figure 4-2 (b). A proof of a version of Wilson’s theorem: K=2 

212211111111212211212211111111111111  

121122111111121122121122111111111111  

222222111111222222222222111111111111  

331131331131111111111111331131111111  

113313113313111111111111113313111111  

333333333333111111111111333333111111  

11111121 2211111111111111212211212211  

212211212211212211212211212211212211  

121122212211121122121122212211212211  

222222212211222222222222212211212211  

111111111111331131331131111111331131  

331131331131331131331131331131331131  

113313113313331131331131113313331131  

33333 3333333331131331131333333331131  

111111121122111111111111121122121122  

212211121122212211212211121122121122  

121122121122121122121122121122121122  

222222121122222222222222121122121122  

111111222222111111111111222222222222  

212211222222212211212211222222222222  

12 1122222222121122121122222222222222  

555222555222555222222222222222222222  

222555222555222555222222222222222222  

555555555555555555222222222222222222  

222222222222222222555222555222555222  

555222555222555222555222555222555222  

222555222555222555555222555222555222  

555555555555555555555222555222555222  

111111111111113313113313111111113313  

331131331131113313113313331131113313  

113313113313113313113313113313113313  

333333333333113313113313333333113313  

111111111111333333333333111111333333  

331131331131333333333333331131333 333  

113313113313333333333333113313333333  

444333444333444333333333333333333333  

646644444444646644646644444444444444  

464466444444464466464466444444444444  

666666444444666666666666444444444444  

444444646644444444444444646644646644  

646644646644646644646644646644646644  

464466646644464466464466 646644646644 

666666646644666666666666646644646644  

222222222222222222222555222555222555  

555222555222555222222555222555222555  

222555222555222555222555222555222555  

555555555555555555222555222555222555  

222222222222222222555555555555555555  

555222555222555222555 555555555555555  

222555222555222555555555555555555555  

665565665565555555555555665565555555  

556656556656555555555555556656555555  

666666666666555555555555666666555555  

555555555555665565665565555555665565  

665565665565665565665565665565665565  

556656556656665565 665565556656665565  

666666666666665565665565666666665565  

555555555555556656556656555555556656  

665565665565556656556656665565556656  

556656556656556656556656556656556656  

666666666666556656556656666666556656  

444444464466444444444444464466464466  

646644464466646644646644464466464466  

464466464466464466464466464466464466  

666666464466666666666666464466464466  

555555555555666666666666555555666666  

665565665565666666666666665565666666  

556656556656666666666666556656666666  

444444666666444444444444666666666666  

646644666666646644646644666666666666  

464466666666464466464466666666666666  

84:swfs found at level:2  
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0:swfs found at level:3 

0:swfs found at level:4 

0:swfs found at level:5 

Figure 4-2 (c). A proof of a version of Wilson’s theorem: K=3,4,5 

 

666666444444555555222222333333111111 

645231645231645231645231645231645231 

123456123456123456123456123456123456 

111111222222333333444444555555666666 

4:swfs found at level:6 

Figure 4-2 (d). A proof of a version of Wilson’s theorem: K=6 

 

 

See Figures 4-2 (a), (b), and (c). First case, K=1, consists of 6 constant SWFs each 

of which is obviously unaffected by the IIA respectively. Second case, K=2, has 84, 

nontrivial, two-valued, all of which consist of precisely 4 ordered pairs. Three cases, 

K=3, 4, 5 are empty. Figure 4-2(d), K=6, shows a reproduction of previous section. 

Under the condition below, K=6 is only permissible, so it proves the theorem. 

5. Binary relation based modeling 

Previous sections demonstrated how PROLOG can be applied for the preference 

based modeling and the social choice theory.  In this section, I argue a version of 

previous program which uses the binary representation for preferences. 

Under the condition IIA, we are permitted to model the preferences for each pair of 

alternatives, instead of the rankings, for the individuals and the society, so that the IIA 

condition has embedded into the code. It is a double recursion exercise of PROLOG, 

inessential to demonstrate here, so, the code has moved to appendix B.  

My code (in appendix B) remodels the same problem in previous sections in terms 

of the binary relations. Figure 5-1 shows that the Arrow’s theorem is proved again. 

And with minor modifications, as I commented in the source code, it also proves for 

Wilson’s. (The code is left as an exercise for the reader.) 
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Figure 5-1. Another proof of the Arrow’s theorem 

 

 

6. Related work 

Many proofs of Arrow’s theorem and the versions have been proposed. But it 

seems me not always clear in paper based proofs how a dictatorship (or the set of 

decisiveness), establishes by propagating these constraints from one profile/pair to 

another. Even graphical representations proposed by some researchers seem not 

always clear of the additional operations required nevertheless for the best.  

PROLOG has been applied for many real industrial or business problems other than 

solving puzzles (i.e., the expert systems). But at least as long as I know there is no 

previous attempt to apply PROLOG to the social choice theory, only except for the 

Nash implementation theory by the author (Indo, 2002).  

There are a few where the proof of Arrow’s theorem is concerned, even by using 

computer programming. The only exception I found was Takekuma (1997) who used 

Mathematica to prove the Arrow’s theorem for the same case as present paper 

under weak preferences. But his proof was governed manually, not just automated, 

and the program is not comprehensible without knowledge about the specific 

software. 

However, my program consists of the declarable PROLOG codes which proves the 

impossibility theorem automatically and visualizes the resulted SWF by table forms. 

Therefore the user may capture a clearer in the process of the proof how the IIA and 

the P constraints the domain of social choice respectively. 
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Indeed the proof of impossibility theorem may be seen as solving constraint 

satisfaction problem (and using the constraint propagation technique). I showed a 

PROLOG implementation of such an idea in present paper by a traditional recursive 

goal seeking for the Arrovian SWF. 

In my personal opinion, the proof can be seen as a precursor of constraint based 

logic programming technologies (Hooker, 2000) because it use the domain specific 

“reduction” and “branching” so as to prove the dictatorship of the SWF.  

Because of the logical modeling it has merits of symbolic representations without 

translating the problem into an integer programming. It may be compared with the 

solver software for mathematical optimization, (and they relates certainly in several 

aspects (Hooker, 2000)).  

But why computer simulations in general not widely used in social choice 

problems as yet except for the probability of voting paradoxes which had come into 

forty or thirty years ago by behavioral scientists? 

I think one reason is the transparency of modeler’s thought which maps the 

application domain in to the programming codes. Unlike conventional optimization 

problems, such like for linear (or quadratic) programming, shortest path network 

algorithm, or assignment problem, the conditions over preference domain models are 

only artificially translated into the constraints of the integer programming as well as 

the game theoretic model of “matching.”  

Finally, I would like to relate my model to the mechanism design (and so to game 

theory). Its computational version (Nisan and Ronen, 2001) has significant 

applications for combinatorial auction design, network traffic control, group meeting 

scheduling systems, etc. But for unrestricted domain, there is no non-dictatorial rule 

which is not manipulable by Gibbard-Satterthwaite theorem. It is logically equivalent 

to Arrow’s theorem and can be proved in the same manner. The PROLOG version is 

also available from the author. 

7. Conclusion 

In this paper I presented a simple PROLOG implementation for social choice 

problem and the impossibility theorems (Arrow, 1963; Wilson, 1972). Thereby I try a 

new tack to study social choice problems which would be called SCPSLP (Social 

Choice Problem Solver in Logic Programming). 

PROLOG turns out to be useful in studying basic social choice theory and 

developing tools to scrutinize the combinatorial properties of the social welfare 

function. It rather fits (in less than 150 lines!) and provides a clearer grasp for the 

logical structure of the theorem and proof. The users of my system, at least 

potentially, would be researchers or students in economics, or political science, the 

traditional applications of the theory as well as in computer science.  

By Wilson’s theorem we know that the key successful factor of non-dictatorial 

SWF is to find a subset of profiles where the (IIA) condition does not hold such that 

the decisive set can not be decomposed into the subsets. This domain restriction 

method will be examined in another paper. 
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Appendix A. The proof process put into words 

We want to show how the IIA condition, accompanied with the Pareto condition, 

propagates among pairs of alternatives and constraints possible assignments for the 

SWF under the transitivity (and the completeness) of preferences. A verbalization of 

the automated proof for the first dictatorial SWF in section 3 is as follows. 

 
% file output start time , [date(2006/3/25), time(18:19:37)] 

 

%----------  start from here ------------% 
 

[1]: A plan : (r(6), r(6))->r(1) violates the Pareto condition against the pair : (e, a) 
[2]: A plan : (r(6), r(6))->r(2) violates the Pareto condition against the pair : (e, m) 

[3]: A plan : (r(6), r(6))->r(3) violates the Pareto condition against the pair : (e, a) 

[4]: A plan : (r(6), r(6))->r(4) violates the Pareto condition against the pair : (e, a) 
[5]: A plan : (r(6), r(6))->r(5) violates the Pareto condition against the pair : (a, m) 

[6]: I suppose at profile : (r(6), r(6))->r(6) without violation so far. 
The SWF under construction: -----------------------------------6 

[7]: A plan : (r(6), r(5))->r(1) violates the Pareto condition against the pair : (e, a) 

[8]: A plan : (r(6), r(5))->r(2) violates the Pareto condition against the pair : (e, m) 
[9]: A plan : (r(6), r(5))->r(3) violates the Pareto condition against the pair : (e, a) 

[10]: A plan : (r(6), r(5))->r(4) violates the Pareto condition against the pair : (e, a) 
[11]: I suppose at profile : (r(6), r(5))->r(5) without violation so far. 

The SWF under construction: ----------------------------------56 

[12]: A plan : (r(6), r(4))->r(1) violates the Pareto condition against the pair : (e, m) 
[13]: A plan : (r(6), r(4))->r(2) violates the Pareto condition against the pair : (e, m) 

[14]: A plan : (r(6), r(4))->r(3) violates the Pareto condition against the pair : (e, m) 
[15]: I suppose at profile : (r(6), r(4))->r(4) without violation so far. 

The SWF under construction: ---------------------------------456 

[16]: A plan : (r(6), r(3))->r(1) violates the Pareto condition against the pair : (a, m) 
[17]: A plan : (r(6), r(3))->r(2) violates the Pareto condition against the pair : (a, m) 

[18]: I suppose at profile : (r(6), r(3))->r(3) without violation so far. 
The SWF under construction: --------------------------------3456 

[19]: A plan : (r(6), r(2))->r(1) violates the Pareto condition against the pair : (e, a) 

[20]: I suppose at profile : (r(6), r(2))->r(2) without violation so far. 
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The SWF under construction: -------------------------------23456 

[21]: I suppose at profile : (r(6), r(1))->r(1) without violation so far. 

The SWF under construction: ------------------------------123456 
[22]: A plan : (r(5), r(6))->r(1) violates the Pareto condition against the pair : (e, m) 

[23]: A plan : (r(5), r(6))->r(2) violates the Pareto condition against the pair : (e, m) 
[24]: A plan : (r(5), r(6))->r(3) violates the Pareto condition against the pair : (e, m) 

[25]: A plan : (r(5), r(6))->r(4) violates the Pareto condition against the pair : (e, a) 

[26]: I suppose at profile : (r(5), r(6))->r(5) without violation so far. 
The SWF under construction: -----------------------------5123456 

[27]: A plan : (r(5), r(5))->r(1) violates the Pareto condition against the pair : (e, m) 
[28]: A plan : (r(5), r(5))->r(2) violates the Pareto condition against the pair : (e, m) 

[29]: A plan : (r(5), r(5))->r(3) violates the Pareto condition against the pair : (e, m) 

[30]: A plan : (r(5), r(5))->r(4) violates the Pareto condition against the pair : (e, a) 
[31]: I suppose at profile : (r(5), r(5))->r(5) without violation so far. 

The SWF under construction: ----------------------------55123456 
[32]: A plan : (r(5), r(4))->r(1) violates the Pareto condition against the pair : (e, m) 

[33]: A plan : (r(5), r(4))->r(2) violates the Pareto condition against the pair : (e, m) 

[34]: A plan : (r(5), r(4))->r(3) violates the Pareto condition against the pair : (e, m) 
[35]: A plan : (r(5), r(4))->r(4) violates the IIA condition against the pair : (m, a) and : (r(5), r(6)->r(5)). 

[36]: A plan : (r(5), r(4))->r(5) violates the IIA condition against the pair : (a, e) and : (r(6), r(1)->r(1)). 
[37]: A plan : (r(5), r(4))->r(6) violates the IIA condition against the pair : (m, a) and : (r(5), r(6)->r(5)). 

[38]: A plan : (r(5), r(5))->r(6) violates the Pareto condition against the pair : (m, a) 

[39]: I suppose at profile : (r(5), r(6))->r(6) without violation so far. 
The SWF under construction: -----------------------------6123456 

[40]: A plan : (r(5), r(5))->r(1) violates the Pareto condition against the pair : (e, m) 
[41]: A plan : (r(5), r(5))->r(2) violates the Pareto condition against the pair : (e, m) 

[42]: A plan : (r(5), r(5))->r(3) violates the Pareto condition against the pair : (e, m) 

[43]: A plan : (r(5), r(5))->r(4) violates the Pareto condition against the pair : (e, a) 
[44]: I suppose at profile : (r(5), r(5))->r(5) without violation so far. 

The SWF under construction: ----------------------------56123456 
[45]: A plan : (r(5), r(4))->r(1) violates the Pareto condition against the pair : (e, m) 

[46]: A plan : (r(5), r(4))->r(2) violates the Pareto condition against the pair : (e, m) 

[47]: A plan : (r(5), r(4))->r(3) violates the Pareto condition against the pair : (e, m) 
[48]: I suppose at profile : (r(5), r(4))->r(4) without violation so far. 

The SWF under construction: ---------------------------456123456 
[49]: A plan : (r(5), r(3))->r(1) violates the IIA condition against the pair : (m, a) and : (r(5), r(4)->r(4)). 

[50]: A plan : (r(5), r(3))->r(2) violates the IIA condition against the pair : (m, a) and : (r(5), r(4)->r(4)). 

[51]: I suppose at profile : (r(5), r(3))->r(3) without violation so far. 
The SWF under construction: --------------------------3456123456 

[52]: A plan : (r(5), r(2))->r(1) violates the Pareto condition against the pair : (e, a) 
[53]: I suppose at profile : (r(5), r(2))->r(2) without violation so far. 

The SWF under construction: -------------------------23456123456 

[54]: I suppose at profile : (r(5), r(1))->r(1) without violation so far. 
The SWF under construction: ------------------------123456123456 

[55]: A plan : (r(4), r(6))->r(1) violates the Pareto condition against the pair : (a, m) 
[56]: A plan : (r(4), r(6))->r(2) violates the Pareto condition against the pair : (a, m) 

[57]: A plan : (r(4), r(6))->r(3) violates the Pareto condition against the pair : (e, m) 

[58]: I suppose at profile : (r(4), r(6))->r(4) without violation so far. 
The SWF under construction: -----------------------4123456123456 

[59]: A plan : (r(4), r(5))->r(1) violates the Pareto condition against the pair : (e, m) 
[60]: A plan : (r(4), r(5))->r(2) violates the Pareto condition against the pair : (e, m) 

[61]: A plan : (r(4), r(5))->r(3) violates the Pareto condition against the pair : (e, m) 

[62]: A plan : (r(4), r(5))->r(4) violates the IIA condition against the pair : (m, a) and : (r(6), r(1)->r(1)). 
[63]: A plan : (r(4), r(5))->r(5) violates the IIA condition against the pair : (a, e) and : (r(4), r(6)->r(4)). 

[64]: A plan : (r(4), r(5))->r(6) violates the IIA condition against the pair : (a, e) and : (r(4), r(6)->r(4)). 
[65]: A plan : (r(4), r(6))->r(5) violates the Pareto condition against the pair : (a, m) 

[66]: I suppose at profile : (r(4), r(6))->r(6) without violation so far. 

The SWF under construction: -----------------------6123456123456 
[67]: A plan : (r(4), r(5))->r(1) violates the Pareto condition against the pair : (e, m) 
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[68]: A plan : (r(4), r(5))->r(2) violates the Pareto condition against the pair : (e, m) 

[69]: A plan : (r(4), r(5))->r(3) violates the Pareto condition against the pair : (e, m) 

[70]: A plan : (r(4), r(5))->r(4) violates the IIA condition against the pair : (a, e) and : (r(4), r(6)->r(6)). 
[71]: I suppose at profile : (r(4), r(5))->r(5) without violation so far. 

The SWF under construction: ----------------------56123456123456 
[72]: A plan : (r(4), r(4))->r(1) violates the Pareto condition against the pair : (a, m) 

[73]: A plan : (r(4), r(4))->r(2) violates the Pareto condition against the pair : (a, e) 

[74]: A plan : (r(4), r(4))->r(3) violates the Pareto condition against the pair : (e, m) 
[75]: I suppose at profile : (r(4), r(4))->r(4) without violation so far. 

The SWF under construction: ---------------------456123456123456 
[76]: A plan : (r(4), r(3))->r(1) violates the Pareto condition against the pair : (a, m) 

[77]: A plan : (r(4), r(3))->r(2) violates the Pareto condition against the pair : (a, e) 

[78]: I suppose at profile : (r(4), r(3))->r(3) without violation so far. 
The SWF under construction: --------------------3456123456123456 

[79]: A plan : (r(4), r(2))->r(1) violates the IIA condition against the pair : (a, e) and : (r(4), r(5)->r(5)). 
[80]: I suppose at profile : (r(4), r(2))->r(2) without violation so far. 

The SWF under construction: -------------------23456123456123456 

[81]: I suppose at profile : (r(4), r(1))->r(1) without violation so far. 
The SWF under construction: ------------------123456123456123456 

[82]: A plan : (r(3), r(6))->r(1) violates the Pareto condition against the pair : (a, m) 
[83]: A plan : (r(3), r(6))->r(2) violates the Pareto condition against the pair : (a, m) 

[84]: A plan : (r(3), r(6))->r(3) violates the IIA condition against the pair : (a, e) and : (r(4), r(2)->r(2)). 

[85]: A plan : (r(3), r(6))->r(4) violates the IIA condition against the pair : (a, e) and : (r(4), r(2)->r(2)). 
[86]: A plan : (r(3), r(6))->r(5) violates the Pareto condition against the pair : (a, m) 

[87]: I suppose at profile : (r(3), r(6))->r(6) without violation so far. 
The SWF under construction: -----------------6123456123456123456 

[88]: A plan : (r(3), r(5))->r(1) violates the IIA condition against the pair : (m, e) and : (r(3), r(6)->r(6)). 

[89]: A plan : (r(3), r(5))->r(2) violates the IIA condition against the pair : (m, e) and : (r(3), r(6)->r(6)). 
[90]: A plan : (r(3), r(5))->r(3) violates the IIA condition against the pair : (m, e) and : (r(3), r(6)->r(6)). 

[91]: A plan : (r(3), r(5))->r(4) violates the IIA condition against the pair : (a, e) and : (r(3), r(6)->r(6)). 
[92]: I suppose at profile : (r(3), r(5))->r(5) without violation so far. 

The SWF under construction: ----------------56123456123456123456 

[93]: A plan : (r(3), r(4))->r(1) violates the Pareto condition against the pair : (a, m) 
[94]: A plan : (r(3), r(4))->r(2) violates the Pareto condition against the pair : (a, m) 

[95]: A plan : (r(3), r(4))->r(3) violates the IIA condition against the pair : (m, e) and : (r(3), r(5)->r(5)). 
[96]: I suppose at profile : (r(3), r(4))->r(4) without violation so far. 

The SWF under construction: ---------------456123456123456123456 

[97]: A plan : (r(3), r(3))->r(1) violates the Pareto condition against the pair : (a, m) 
[98]: A plan : (r(3), r(3))->r(2) violates the Pareto condition against the pair : (a, m) 

[99]: I suppose at profile : (r(3), r(3))->r(3) without violation so far. 
The SWF under construction: --------------3456123456123456123456 

[100]: A plan : (r(3), r(2))->r(1) violates the IIA condition against the pair : (a, e) and : (r(3), r(5)->r(5)). 

[101]: I suppose at profile : (r(3), r(2))->r(2) without violation so far. 
The SWF under construction: -------------23456123456123456123456 

[102]: I suppose at profile : (r(3), r(1))->r(1) without violation so far. 
The SWF under construction: ------------123456123456123456123456 

[103]: A plan : (r(2), r(6))->r(1) violates the Pareto condition against the pair : (e, a) 

[104]: A plan : (r(2), r(6))->r(2) violates the IIA condition against the pair : (m, e) and : (r(3), r(4)->r(4)). 
[105]: A plan : (r(2), r(6))->r(3) violates the Pareto condition against the pair : (e, a) 

[106]: A plan : (r(2), r(6))->r(4) violates the Pareto condition against the pair : (e, a) 
[107]: A plan : (r(2), r(6))->r(5) violates the IIA condition against the pair : (m, a) and : (r(5), r(3)->r(3)). 

[108]: I suppose at profile : (r(2), r(6))->r(6) without violation so far. 

The SWF under construction: -----------6123456123456123456123456 
[109]: A plan : (r(2), r(5))->r(1) violates the Pareto condition against the pair : (e, a) 

[110]: A plan : (r(2), r(5))->r(2) violates the IIA condition against the pair : (m, e) and : (r(2), r(6)->r(6)). 
[111]: A plan : (r(2), r(5))->r(3) violates the Pareto condition against the pair : (m, a) 

[112]: A plan : (r(2), r(5))->r(4) violates the Pareto condition against the pair : (m, a) 

[113]: I suppose at profile : (r(2), r(5))->r(5) without violation so far. 
The SWF under construction: ----------56123456123456123456123456 
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[114]: A plan : (r(2), r(4))->r(1) violates the IIA condition against the pair : (m, e) and : (r(2), r(5)->r(5)). 

[115]: A plan : (r(2), r(4))->r(2) violates the IIA condition against the pair : (m, e) and : (r(2), r(5)->r(5)). 

[116]: A plan : (r(2), r(4))->r(3) violates the IIA condition against the pair : (m, e) and : (r(2), r(5)->r(5)). 
[117]: I suppose at profile : (r(2), r(4))->r(4) without violation so far. 

The SWF under construction: ---------456123456123456123456123456 
[118]: A plan : (r(2), r(3))->r(1) violates the IIA condition against the pair : (m, a) and : (r(2), r(4)->r(4)). 

[119]: A plan : (r(2), r(3))->r(2) violates the IIA condition against the pair : (m, a) and : (r(2), r(4)->r(4)). 

[120]: I suppose at profile : (r(2), r(3))->r(3) without violation so far. 
The SWF under construction: --------3456123456123456123456123456 

[121]: A plan : (r(2), r(2))->r(1) violates the Pareto condition against the pair : (e, a) 
[122]: I suppose at profile : (r(2), r(2))->r(2) without violation so far. 

The SWF under construction: -------23456123456123456123456123456 

[123]: I suppose at profile : (r(2), r(1))->r(1) without violation so far. 
The SWF under construction: ------123456123456123456123456123456 

[124]: A plan : (r(1), r(6))->r(1) violates the IIA condition against the pair : (m, a) and : (r(2), r(3)->r(3)). 
[125]: A plan : (r(1), r(6))->r(2) violates the IIA condition against the pair : (m, a) and : (r(2), r(3)->r(3)). 

[126]: A plan : (r(1), r(6))->r(3) violates the IIA condition against the pair : (m, e) and : (r(2), r(4)->r(4)). 

[127]: A plan : (r(1), r(6))->r(4) violates the IIA condition against the pair : (a, e) and : (r(3), r(2)->r(2)). 
[128]: A plan : (r(1), r(6))->r(5) violates the IIA condition against the pair : (m, a) and : (r(2), r(3)->r(3)). 

[129]: I suppose at profile : (r(1), r(6))->r(6) without violation so far. 
The SWF under construction: -----6123456123456123456123456123456 

[130]: A plan : (r(1), r(5))->r(1) violates the IIA condition against the pair : (m, e) and : (r(1), r(6)->r(6)). 

[131]: A plan : (r(1), r(5))->r(2) violates the IIA condition against the pair : (m, e) and : (r(1), r(6)->r(6)). 
[132]: A plan : (r(1), r(5))->r(3) violates the Pareto condition against the pair : (m, a) 

[133]: A plan : (r(1), r(5))->r(4) violates the Pareto condition against the pair : (m, a) 
[134]: I suppose at profile : (r(1), r(5))->r(5) without violation so far. 

The SWF under construction: ----56123456123456123456123456123456 

[135]: A plan : (r(1), r(4))->r(1) violates the IIA condition against the pair : (m, e) and : (r(1), r(5)->r(5)). 
[136]: A plan : (r(1), r(4))->r(2) violates the Pareto condition against the pair : (a, e) 

[137]: A plan : (r(1), r(4))->r(3) violates the IIA condition against the pair : (m, e) and : (r(1), r(5)->r(5)). 
[138]: I suppose at profile : (r(1), r(4))->r(4) without violation so far. 

The SWF under construction: ---456123456123456123456123456123456 

[139]: A plan : (r(1), r(3))->r(1) violates the IIA condition against the pair : (m, a) and : (r(1), r(4)->r(4)). 
[140]: A plan : (r(1), r(3))->r(2) violates the Pareto condition against the pair : (a, e) 

[141]: I suppose at profile : (r(1), r(3))->r(3) without violation so far. 
The SWF under construction: --3456123456123456123456123456123456 

[142]: A plan : (r(1), r(2))->r(1) violates the IIA condition against the pair : (a, e) and : (r(1), r(5)->r(5)). 

[143]: I suppose at profile : (r(1), r(2))->r(2) without violation so far. 
The SWF under construction: -23456123456123456123456123456123456 

[144]: I suppose at profile : (r(1), r(1))->r(1) without violation so far. 
The SWF under construction:123456123456123456123456123456123456 

%----------  end of data ------------% 

% file output end time , [date(2006/3/25), time(18:19:38)] 

Appendix B. The source code for binary relation based modeling1 

% The source code of "An automated proof of Arrow’s theorem: 

% A version in binary relations" 

% By Kenryo INDO (Kanto Gakuen University) 

% program name: swf_bin.pl (23 Mar 2006)  

% language: PROLOG (tested on swi-prolog 5.0.10)  

 

% modeling preference relations 

                                                           
1 Earlier versions are downloadable. (http://www.us.kanto-gakuen.ac.jp/indo/front_e.html) 
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%-------------------------------------------------- 

alternatives( [m,a,e]). 

 

possible_ranking_0([m,a,e], r(1)). 

possible_ranking_0([m,e,a], r(2)). 

possible_ranking_0([a,m,e], r(3)). 

possible_ranking_0([a,e,m], r(4)). 

possible_ranking_0([e,m,a], r(5)). 

possible_ranking_0([e,a,m], r(6)). 

 

x_precedes_y_in_list( X, Y, R):- 

   append( _,[X|Z],R), member( Y, Z). 

 

prefer_x_to_y( X, Y, Rn):- 

   possible_ranking_0( R, Rn), 

   x_precedes_y_in_list( X, Y, R). 

 

distinct_pair_lex( X, Y):- distinct_pair( X, Y), 

   alternatives(A), 

   x_precedes_y_in_list( X, Y, A). 

 

distinct_pair( X, Y):- 

   alternatives( A), 

   member(X, A), 

   exsists_in_preference(X), 

   member(Y, A), 

   Y \= X, 

   exsists_in_preference(Y). 

 

exsists_in_preference(X):- 

   \+ \+ ( 

     possible_ranking_0(R,_), 

     member( X,R) 

   ). 

 

% SWF in binary comparisons 

%-------------------------------------------------- 

swf_bin(W):- 

   findall( (X,Y), distinct_pair_lex(X,Y),Lb), 

   swf_bin_1( Lb, W), 

   \+ inconsistent_bin( W, _). 

 

swf_bin_1([],[]). 

swf_bin_1([(X,Y)|L],[(X,Y):Fb|W]):- 

   swf_bin_1(L,W), 

   swf_bin_2([X,Y],(X,Y),Fb), 

  %noimposed_bin((X,Y),Fb),  %use this for Wilson's theorem 

   true. 

 

swf_bin_2([],_,[]). 

swf_bin_2([Rb1|H1],(X,Y), [Swf|W]):- 

   swf_bin_2(H1,(X,Y), W), 
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   swf_bin_3(Rb1,(X,Y),[X,Y],Swf). 

 

swf_bin_3( _, _,[],[]). 

swf_bin_3( Rb1,(X,Y),[Rb2|H2],[(Rb1,Rb2)->Rb|F]):- 

   swf_bin_3( Rb1,(X,Y),H2,F), 

   unanimity_bin((X,Y),[Rb,Rb1,Rb2]),  %comment out if without (P). 

   member(Rb,[X,Y]). 

 

unanimity_bin((X,_),[X,X,X]).  

unanimity_bin((_,Y),[Y,Y,Y]).  

unanimity_bin((_,_),[_,R,S]):- not(R = S). 

 

inconsistent_bin( [B1:Fma,B2:Fme,B3:Fae], [V1,V2,V3]):- 

   flatten( Fma, Wma), 

   flatten( Fme, Wme), 

   flatten( Fae, Wae), 

   member( (A,S)->P, Wma), V1= B1: ((A,S)->P), 

   member( (B,T)->Q, Wme), V2= B2: ((B,T)->Q), 

   member( (C,U)->R, Wae), V3= B3: ((C,U)->R), 

   Circulars= [(m,e,a),(a,m,e)], 

   \+ member( (A,B,C), Circulars), 

   \+ member( (S,T,U), Circulars), 

   member( (P,Q,R), Circulars). 

 

noimposed_bin((X,Y),Fb):- 

   flatten(Fb,Fb1), 

   \+ \+ member(_->X,Fb1), 

   \+ \+ member(_->Y,Fb1). 

 

% tabular form display 

%-------------------------------------------------- 

show_swf_bin(W):- 

   distinct_pair(X,Y), 

   show_swf_bin((X,Y),W), 

   fail. 

show_swf_bin(_):- 

   nl, 

   write('end of SWF'). 

show_swf_bin((X,Y),W):- 

   member((X,Y):Fb,W), 

   nl, 

   write(pair:(X,Y)), 

   forall( 

     member(A,Fb), 

     (nl,tab(4),write(A)) 

   ). 

 

% end of the program 

%-------------------------------------------------- 

 


