
An automated proof of Arrow’s theorem

Kenryo INDO

Kanto Gakuen University, 200 Fujiagu, Ota, Gunma, 373-8515 Japan

Abstract. This paper presents a simple PROLOG implementation for social

choice problem. A model of society consists of alternatives, agents, and

preferences of agents. Social welfare function (SWF) organizes different

preferences among agents into a social preference. Kenneth J. Arrow (1963)

proved that any SWF which satisfies a set of conditions of the IIA, of the

Pareto, and of the unrestricted domain should be dictatorial. My PROLOG
program for 3 alternatives and 2 agents proves the Arrow’s impossibility

theorem. With a minor modification, a version of the theorem without the

Pareto condition firstly proved by Wilson (1972) also can be computed by using

my program.

Keywords: social choice theory, impossibility theorem, PROLOG.

1. Introduction

Social choice theory deals with the following problem: Suppose we have a group

of agents facing a number of alternatives collectively; each agent has a preference

over which alternative is chosen individually. Which alternatives should the group as

a whole adopt?

Examples of this problem are familiar from everyday life: Let us suppose that a

class has a choice between three possible time slots for the TA's office hours, say,

either morning (m), afternoon (n), or evening (e). Each student has a preference with

respect to one or the other. The instructor has to balance these preferences to

determine a time slot.

Kenneth J. Arrow (1963) proved such a mission is impossible if he/she can not

suppose any restriction on the preference of students. More precisely, there is no

social welfare function (SWF) which satisfies simultaneously a set of conditions, (U),

(P), (IIA), and not (D). The intuitive contents of the 4 conditions are as follows.

− Unrestricted domain (U): Every logically possible preference never to be inhibited.

− Pareto condition (P): Unanimity. If they both prefer X to Y then X must be chosen.

− Independence of irrelevant alternatives (IIA): For any preference if society prefers

X to Y, so does unless someone changes his/her preference between X and Y.

− Dictatorship (D): Society prefers X to Y whenever a same single member does do.

2 Kenryo INDO

In other words, if there are at least three alternatives, any social choice rule which

satisfies (P) and (IIA) must be dictatorial (D) assuming all logically possible

preferences permitted (Arrow (1963), pp.51-9, pp.97-100; Sen (1995), p.4).

PROLOG (i.e., programming in logic) is familiar to computer scientists, especially

in AI community. By using it, the logical content of the impossibility theorem may be

translated into a rule (a Horn-clause),

(rule A)

is_Arrovian_SWF(Swf):-

 is_logically_possible(Swf),

 is_Pareto_consistent(Swf),

 is_IIA_consistent(Swf),

not(is_dictatorial(Swf)).

The code I wrote in reality is of recursion over possible profiles (in section 3).

Nevertheless a rule below may indicate the declarative meaning of that theorem.

Specifically since the set of conditions {(not D), U, IIA, P} is unsatisfiable by

Arrow’s theorem. The theorem can be equivalently modeled as follows.

(rule B)

is_dictatorial(Swf):-

 is_logically_possible(Swf),

 is_Pareto_consistent(Swf),

 is_IIA_consistent(Swf).

 PROLOG system successfully prove the condition (D), in the left hand side (“the

head” of the clause) if the conjunctive (U), (P), and (IIA) in the right hand side (“the

body” of the clause) are satisfied simultaneously.

The proof procedure such as stated above is called “the resolution principle” a

computational realization of syllogisms. Then the system attempts to a “pattern

match” to the SWF, a variable term in above code, generating possible social welfare
functions modeled by the conjunctive by try and error (i.e., the backtracks). Rule A

should have failed. The rule B can succeed with a matched term (or possibly keep up

until it can not prove the cases any more).

However, because of the exponentiation, it is impossible to prove by means of

naive “generate and test” method. Even in a small case of, for example, 2 agents and 3

alternatives, there are 6 possible rankings for strict ordering model, and 6
36
 possible

An automated proof of Arrow’s theorem 3

candidates of SWF defined over 6
2
 possible profiles. In weak order case, there are 13

possible rankings permitting tie, and 13
169
 possible candidates for the SWF defined

over 13
2
 possible profiles. Precisely, for the case of n agents and m alternatives, there

are (m!
 n
)th power of m! candidates in strict preferences.

The impossibility theorem provides good exercise to write efficient code with

recursion. The code I made actually is of the case of 2 agents with 3 alternatives. It

may be extended for larger, but the complexity is exponential order. It seems a

challenging work to design a simple proof for the theorem automatically.

The paper organizes as follows. Next section shows an example of PROLOG

modeling for social choice problem. In Section 3 our system can provide an

automated proof of the Arrow’s impossibility theorem for the case of 3 alternatives

and 2 agents. Further, with minor modification we have a generalized impossibility

result without the Pareto condition firstly proven by Robert Wilson (1972) in Section

4. Section 5 argues a visualization of the process of proof with a version of my

program in binary relations. Section 6 mentions the related research fields. Last

section concludes.

2. Logic programming for social choice problem

In this section I will show how PROLOG can be applied to model a social choice

problem by using the example in previous section. For the ISO-standard grammar and

system predicates, see Cocksin and Mellish (2003). First of all, I model the

alternatives and the individuals, next the individual or social rankings over the

alternatives. I conclude with a possible construction for the social welfare function.

2-1. individual preferences

Now, suppose two students, Alice and Bob, who are prefer morning to evening,

and evening to morning respectively. Other pairs of comparison are same for both

students, say, morning to afternoon, and afternoon to evening.

In PROLOG, the set of alternatives, the members of the society, and the preferences

of the members respectively may be modeled as the following facts.

alternatives([m,a,e]).

members_of_society([alice,bob]).

preference(alice, [(m,e),(m,a),(a,e)]).

preference(bob, [(e,m),(m,a),(a,e)]).

Traditionally the rational (individual/social) choice theory assumes that a complete,

transitive, and anti-symmetric for strict preference models. So we can consistently use

lists for the basic representation of preferences if the agent’s preference is rational in

this sense. For the Alice’s preference, it can be stated by using, [m, a, e], a list as

4 Kenryo INDO

ranking(alice, [m,a,e]).

While Bob’s preference obviously circulates by transitive reasoning, so it can not

be represented as a list. Instead, suppose the Bob’s preference

preference(bob, [(e,m),(a,m),(a,e)]).

Or equivalently,

ranking(bob, [a,e,m]).

Weak preferences can be handled by minor modifications, by adding 3-1 elements

list which signifies the indifferences. But we will focus on strict cases in this paper for

the sake of simplicity.

In summary, the preferences of Alice and Bob are coded simply as follows.

ranking(alice, [m,a,e]).

ranking(bob, [a,e,m]).

2-2. binary relations

Next I show a rule with variables to reproduce the binary preference relations from

the rankings.

prefer_x_to_y(J, X, Y, R):-

ranking(J, R),

x_precedes_y_in_list(X, Y, R).

x_precedes_y_in_list(X, Y, R):-

append(_,[X|Z],R),

member(Y, Z).

A variable in PROLOG starts with a capital letter which will be matched during the

query, or with an underscore when anonymously used.

2-3. reasoning about preference

The PROLOG system acts as if proving a theorem, or seeking a given goal and

solving a set of constraints. Figure 2-1 shows such an example in the context of

integer domain.

An automated proof of Arrow’s theorem 5

Figure 2-1. The goal is to find a pair of integers (X, Y) such that X is in {1, 2, 3}, Y is

in {3, 4, 5} and the sum of squares is 13 or 17.

Figure 2-2. What (Y) is not preferred to morning by Alice who has ranking R.

It seeks a clause which has the negation of goal predicate as the head and produces

sequentially the subsidiary goals, predicates in the body and repeats until there is no

other solution. Figure 2-2 shows a sample execution of reasoning in previous social

choice problem, the goal is a prefer_x_to_y/4 and the subsidiary goals are a

ranking/2 and an x_precedes_y_in_list/3.

I would like to interpret the query in Figure 2-2 such like as that “What (Y) is not

preferred to morning by Alice who has ranking R.” And the output of PROLOG

system that “I found the case where her ranking is m>a>e and either ‘afternoon’ or

‘evening’ is preferred.” Such a dialog can be simulated easily, but I omit because of

limited space. Subsequently, I verbalize a proof for the impossibility theorem in

Section 3 and Appendix A.

2-4. logically possible preferences

It may be beneficial to the later analyses that in advance we prepare the 6 logically

possible rankings in PROLOG database with numberings.

6 Kenryo INDO

possible_ranking_0([m,a,e], r(1)).

possible_ranking_0([m,e,a], r(2)).

possible_ranking_0([a,m,e], r(3)).

possible_ranking_0([a,e,m], r(4)).

possible_ranking_0([e,m,a], r(5)).

possible_ranking_0([e,a,m], r(6)).

It is noteworthy that if some clauses were removed, we would have a model of

restricted domain.

Then we rewrite a rule for possible rankings of the individual agent and the

society.

possible_ranking(J, R):-

members_of_society(N),

member(J,N),

possible_ranking_0(_, r(R)).

Next we can write a rule for possible profile of individual rankings.

possible_ranking_profile((R1,R2)):-

possible_ranking(alice,R1),

possible_ranking(bob, R2).

2-5. social welfare function

A social welfare function (SWF) selects a ranking for each possible profile of

rankings of all the member of society. Next I give a dictatorial rule (to Alice) at some

profile in previous example.

dictatorial_swf_for_alice(R1, R2, R1):-

ranking(alice,R1),

ranking(bob, R2).

An automated proof of Arrow’s theorem 7

But the instructor would think a non-dictatorial way, for example, by a majority

vote or unanimity rule. However, Arrow’s theorem tells us that he/she can never

success unless violating the conditions referred in introductory section.

A code which generates the SWF recursively is such a below.

try_SWF_assignment_1([], []).

try_SWF_assignment_1([(R1,R2)->R|F], [(R1,R2)|Q]):-

try_SWF_assignment_1(F, Q),

possible_ranking(society, R).

is_logically_possible_SWF(F):-

findall(P, possible_ranking_profile(P), Q),

try_SWF_assignment_1(F, Q).

PROLOG programmers frequently use recursions in order to compute iteratively,

instead of For or While statements in other conventional programming languages

which are not allowed in the standard PROLOG language.

2-6. display in tabular form

Next code displays the generated SWF in a table format without labels or lines.

show_swf(F):-

nl,

forall(

 bagof(S, Q^member((_,Q)->S,F), L),

 (nl,write(L))

).

The user may easily modify the table into a specified form. The code is left as an

exercise for the reader.

8 Kenryo INDO

3. Automated proof of the impossibility theorem

This section models firstly the Pareto condition and the IIA condition which

constraint on the SWF. Then I modify the rule to generate SWF recursively

incorporates these constraints. Lastly, I show an automated proof of the Arrow’s

theorem.

3-1. the Pareto condition

The Pareto condition (P) can be translated into a rule in PROLOG such as

is_Pareto_consistent((R1,R2)->R):-

 not(

 violates_Pareto_condition(_,(R1,R2)->R)

).

violates_Pareto_condition((X,Y),(R1,R2)->R):-

 prefer_x_to_y(X, Y, R1),

 prefer_x_to_y(X, Y, R2),

 possible_ranking_0(_, R),

 not(prefer_x_to_y(X, Y, R)).

That is, if the rankings of students are same, also the society is. This is not exact

literally for the condition, since originally stated in binary form. Indeed it is rather

weak, but the consequence of the theorem is same.

3-2. the IIA condition

The condition (IIA) informally means such as “What society prefers from a pair of

alternatives always can be determined irrelevant to what a true preference profile is

except for that pair.”

Firstly, I rewrite rules for binary preferences and their profiles for the simplicity of

that for the condition (IIA).

prefer_x_to_y_B((X, Y), R, B):-

 distinct_pair(X,Y),

 (prefer_x_to_y(X, Y, R)->B=1;B=0).

An automated proof of Arrow’s theorem 9

binary_choice_profile((X, Y), (R1,R2), (B1,B2)):-

 prefer_x_to_y_B((X, Y), R1, B1),

 prefer_x_to_y_B((X, Y), R2, B2).

By next rule PROLOG system try to catch contradicted pairs of alternatives at a

profile given attempting assignments to a candidate SWF.

violates_IIA_condition((X, Y), (P, Q)-> R, F):-

 not(F=[]),

 member((P1,Q1)-> S, F),

 binary_choice_profile((X, Y), (P,Q), B),

 binary_choice_profile((X, Y), (P1,Q1), B),

 not(binary_choice_profile((X,Y), (R,S), (A,A))).

Then a test of the (IIA) for a given SWF candidate may be written such a rule

below.

is_IIA_consistent((R1,R2)->R, F):-

 not((

 violates_IIA_condition(_, (R1,R2)->R, F)

)).

But this code is not useful in order to generate the SWF because of the complexity,

so we should revise it. Please note that if we confine the possible_ranking_0/2

to only 2 alternatives the IIA is vacuously satisfied

3-3. coping with the complexity

Thus, the combinatorial nature just fit the logic programming. However,

complexity problem arises. Even in this small case there are 6^6^2 possible

candidates of SWF (i.e., the 6 possible rankings over the 36 possible profiles of

rankings).

In order to prove, or disprove, the Arrow’s theorem, you never adopt a naïve

generate-and-test method, so I modify previous rule for SWF by incorporating above

constraints checking both (P) and (IIA) accordingly.

try_SWF_assignment_2([], []).

try_SWF_assignment_2([(R1,R2)->R|F], [(R1,R2)|Q]):-

10 Kenryo INDO

 try_SWF_assignment_2(F, Q),

 possible_ranking_0(_, R),

 is_Pareto_consistent((R1, R2)-> R),

 is_IIA_consistent((R1, R2)->R, F).

is_Arrovian_SWF(F):-

 findall(P, possible_ranking_profile(P), Q),

 try_SWF_assignment_2(F, Q).

Therefore we can rule out violations to the Arrovian SWF cumulatively. In order to

proof the theorem, simply type the following query at a prompt (and an enter key)

which results in the two dictatorial SWFs (see Figure 3-1).

?- is_Arrovian_SWF(A),

show_swf(A), nl,write('---'),fail.

Indeed, the code will lightly produce only dictatorial SWFs either for Alice or Bob.

In the upper table form in Figure 3-1, the Bob’s dictatorial SWF is shown which has 6

rows each of which is the ranking of him. As for the lower table form, the Alice’s

dictatorial SWF consists of columns each of which is just her ranking. (Appendix A

shows the verbalization of the proof.) There is no room for possibility of democratic

decision making, so the impossibility theorem is proven.

Figure 3-1. A proof of the Arrow’s theorem

An automated proof of Arrow’s theorem 11

4. Impossibility without the Pareto condition

A version of the Arrow’s theorem without the Pareto condition but under weak

citizen sovereignty condition can be proven. The result firstly proved by Wilson

(1972) for weak preferences.

− Citizen sovereignty (CS): Every logically possible ordered pair should be included

in the SWF at least at one preference profile.

4-1. the Wilson’s theorem

For strict preferences, since total indifference (i.e., the null SWF) is ruled out, there

only exists either dictatorial or anti-dictatorial. A proof for the theorem and the code

can be readily obtained as follows.

try_SWF_assignment_4([], []).

try_SWF_assignment_4([(R1,R2)->R|F], [(R1,R2)|Q]):-

 try_SWF_assignment_4(F, Q),

 possible_ranking_0(_, R),

 is_IIA_consistent((R1, R2)->R, F).

is_almost_Arrovian_SWF(F, K):-

 findall(P, possible_ranking_profile(P), Q),

 try_SWF_assignment_4(F, Q),

 setof(R, P^member(P->R, F), S),

 length(S, K).

After a reload with the code above, the proof will be obtained by following

command. The results are shown as Figure 4-1.

?- is_almost_Arrovian_SWF(A,6),

show_swf(A), nl,write('---'),fail.

12 Kenryo INDO

Figure 4-1. A proof of the Wilson’s theorem

4-2. the Wilson’s theorem revisited

Now, we have a result which summarizes the experimentations using above code

for varying K=1, 2, …, 6. K denotes the number of distinct ordered pairs included in

the SWF. To do this, I added a rule, test_Wilson/1, but I omit here.

111111111111111111111111111111111111

222222222222222222222222222222222222

333333333333333333333333333333333333

444444444444444444444444444444444444

555555555555555555555555555555555555

666666666666666666666666666666666666

6:swfs found at level:1

Figure 4-2 (a). A proof of a version of Wilson’s theorem: K=1

An automated proof of Arrow’s theorem 13

Figure 4-2 (b). A proof of a version of Wilson’s theorem: K=2

212211111111212211212211111111111111

121122111111121122121122111111111111

222222111111222222222222111111111111

331131331131111111111111331131111111

113313113313111111111111113313111111

333333333333111111111111333333111111

11111121 2211111111111111212211212211

212211212211212211212211212211212211

121122212211121122121122212211212211

222222212211222222222222212211212211

111111111111331131331131111111331131

331131331131331131331131331131331131

113313113313331131331131113313331131

33333 3333333331131331131333333331131

111111121122111111111111121122121122

212211121122212211212211121122121122

121122121122121122121122121122121122

222222121122222222222222121122121122

111111222222111111111111222222222222

212211222222212211212211222222222222

12 1122222222121122121122222222222222

555222555222555222222222222222222222

222555222555222555222222222222222222

555555555555555555222222222222222222

222222222222222222555222555222555222

555222555222555222555222555222555222

222555222555222555555222555222555222

555555555555555555555222555222555222

111111111111113313113313111111113313

331131331131113313113313331131113313

113313113313113313113313113313113313

333333333333113313113313333333113313

111111111111333333333333111111333333

331131331131333333333333331131333 333

113313113313333333333333113313333333

444333444333444333333333333333333333

646644444444646644646644444444444444

464466444444464466464466444444444444

666666444444666666666666444444444444

444444646644444444444444646644646644

646644646644646644646644646644646644

464466646644464466464466 646644646644

666666646644666666666666646644646644

222222222222222222222555222555222555

555222555222555222222555222555222555

222555222555222555222555222555222555

555555555555555555222555222555222555

222222222222222222555555555555555555

555222555222555222555 555555555555555

222555222555222555555555555555555555

665565665565555555555555665565555555

556656556656555555555555556656555555

666666666666555555555555666666555555

555555555555665565665565555555665565

665565665565665565665565665565665565

556656556656665565 665565556656665565

666666666666665565665565666666665565

555555555555556656556656555555556656

665565665565556656556656665565556656

556656556656556656556656556656556656

666666666666556656556656666666556656

444444464466444444444444464466464466

646644464466646644646644464466464466

464466464466464466464466464466464466

666666464466666666666666464466464466

555555555555666666666666555555666666

665565665565666666666666665565666666

556656556656666666666666556656666666

444444666666444444444444666666666666

646644666666646644646644666666666666

464466666666464466464466666666666666

84:swfs found at level:2

14 Kenryo INDO

0:swfs found at level:3

0:swfs found at level:4

0:swfs found at level:5

Figure 4-2 (c). A proof of a version of Wilson’s theorem: K=3,4,5

666666444444555555222222333333111111

645231645231645231645231645231645231

123456123456123456123456123456123456

111111222222333333444444555555666666

4:swfs found at level:6

Figure 4-2 (d). A proof of a version of Wilson’s theorem: K=6

See Figures 4-2 (a), (b), and (c). First case, K=1, consists of 6 constant SWFs each

of which is obviously unaffected by the IIA respectively. Second case, K=2, has 84,

nontrivial, two-valued, all of which consist of precisely 4 ordered pairs. Three cases,

K=3, 4, 5 are empty. Figure 4-2(d), K=6, shows a reproduction of previous section.

Under the condition below, K=6 is only permissible, so it proves the theorem.

5. Binary relation based modeling

Previous sections demonstrated how PROLOG can be applied for the preference

based modeling and the social choice theory. In this section, I argue a version of

previous program which uses the binary representation for preferences.

Under the condition IIA, we are permitted to model the preferences for each pair of

alternatives, instead of the rankings, for the individuals and the society, so that the IIA

condition has embedded into the code. It is a double recursion exercise of PROLOG,

inessential to demonstrate here, so, the code has moved to appendix B.

My code (in appendix B) remodels the same problem in previous sections in terms

of the binary relations. Figure 5-1 shows that the Arrow’s theorem is proved again.

And with minor modifications, as I commented in the source code, it also proves for

Wilson’s. (The code is left as an exercise for the reader.)

An automated proof of Arrow’s theorem 15

Figure 5-1. Another proof of the Arrow’s theorem

6. Related work

Many proofs of Arrow’s theorem and the versions have been proposed. But it

seems me not always clear in paper based proofs how a dictatorship (or the set of

decisiveness), establishes by propagating these constraints from one profile/pair to

another. Even graphical representations proposed by some researchers seem not

always clear of the additional operations required nevertheless for the best.

PROLOG has been applied for many real industrial or business problems other than

solving puzzles (i.e., the expert systems). But at least as long as I know there is no

previous attempt to apply PROLOG to the social choice theory, only except for the

Nash implementation theory by the author (Indo, 2002).

There are a few where the proof of Arrow’s theorem is concerned, even by using

computer programming. The only exception I found was Takekuma (1997) who used

Mathematica to prove the Arrow’s theorem for the same case as present paper

under weak preferences. But his proof was governed manually, not just automated,

and the program is not comprehensible without knowledge about the specific

software.

However, my program consists of the declarable PROLOG codes which proves the

impossibility theorem automatically and visualizes the resulted SWF by table forms.

Therefore the user may capture a clearer in the process of the proof how the IIA and

the P constraints the domain of social choice respectively.

16 Kenryo INDO

Indeed the proof of impossibility theorem may be seen as solving constraint

satisfaction problem (and using the constraint propagation technique). I showed a

PROLOG implementation of such an idea in present paper by a traditional recursive

goal seeking for the Arrovian SWF.

In my personal opinion, the proof can be seen as a precursor of constraint based

logic programming technologies (Hooker, 2000) because it use the domain specific

“reduction” and “branching” so as to prove the dictatorship of the SWF.

Because of the logical modeling it has merits of symbolic representations without

translating the problem into an integer programming. It may be compared with the

solver software for mathematical optimization, (and they relates certainly in several

aspects (Hooker, 2000)).

But why computer simulations in general not widely used in social choice

problems as yet except for the probability of voting paradoxes which had come into

forty or thirty years ago by behavioral scientists?

I think one reason is the transparency of modeler’s thought which maps the

application domain in to the programming codes. Unlike conventional optimization

problems, such like for linear (or quadratic) programming, shortest path network

algorithm, or assignment problem, the conditions over preference domain models are

only artificially translated into the constraints of the integer programming as well as

the game theoretic model of “matching.”

Finally, I would like to relate my model to the mechanism design (and so to game

theory). Its computational version (Nisan and Ronen, 2001) has significant

applications for combinatorial auction design, network traffic control, group meeting

scheduling systems, etc. But for unrestricted domain, there is no non-dictatorial rule

which is not manipulable by Gibbard-Satterthwaite theorem. It is logically equivalent

to Arrow’s theorem and can be proved in the same manner. The PROLOG version is

also available from the author.

7. Conclusion

In this paper I presented a simple PROLOG implementation for social choice

problem and the impossibility theorems (Arrow, 1963; Wilson, 1972). Thereby I try a

new tack to study social choice problems which would be called SCPSLP (Social

Choice Problem Solver in Logic Programming).

PROLOG turns out to be useful in studying basic social choice theory and

developing tools to scrutinize the combinatorial properties of the social welfare

function. It rather fits (in less than 150 lines!) and provides a clearer grasp for the

logical structure of the theorem and proof. The users of my system, at least

potentially, would be researchers or students in economics, or political science, the

traditional applications of the theory as well as in computer science.

By Wilson’s theorem we know that the key successful factor of non-dictatorial

SWF is to find a subset of profiles where the (IIA) condition does not hold such that

the decisive set can not be decomposed into the subsets. This domain restriction

method will be examined in another paper.

An automated proof of Arrow’s theorem 17

References

[1] Arrow, K. J. (1963). “Social Choice and Individual Values,” 2nd edition, Yale University

Press. (Originally published by Wiley)

[2] Clocksin, W. F. and C. S. Mellish (2003). “Programming in Prolog : Using the ISO

Standard,” 5th edition, Springer.

[3] Hooker, J. (2000). “Logic-base Methods for Optimization: Combining Optimization and

Constraint Satisfaction,” Wiley.

[4] Indo, K. (2002). Implementing Nash implementation theory in PROLOG, mimeo.

[5] Nisan, N. and A. Ronen (2001). Algorithmic mechanism design, Games and Economic

Behavior 35: 166-196.

[6] Sen, A. (1995). Rationality and social choice, The American Economic Review 38: 1-24.

[7] Takekuma, S. (1997). A proof of arrow’s impossibility theorem by MATHEMATICA,

Hitotsubashi Journal of Economics 38: 139-148.

[8] Wilson, R. (1972). Social choice theory without the Pareto principle, Journal of Economic

Theory 5: 478-486.

Appendix A. The proof process put into words

We want to show how the IIA condition, accompanied with the Pareto condition,

propagates among pairs of alternatives and constraints possible assignments for the

SWF under the transitivity (and the completeness) of preferences. A verbalization of

the automated proof for the first dictatorial SWF in section 3 is as follows.

% file output start time , [date(2006/3/25), time(18:19:37)]

%---------- start from here ------------%

[1]: A plan : (r(6), r(6))->r(1) violates the Pareto condition against the pair : (e, a)
[2]: A plan : (r(6), r(6))->r(2) violates the Pareto condition against the pair : (e, m)

[3]: A plan : (r(6), r(6))->r(3) violates the Pareto condition against the pair : (e, a)

[4]: A plan : (r(6), r(6))->r(4) violates the Pareto condition against the pair : (e, a)
[5]: A plan : (r(6), r(6))->r(5) violates the Pareto condition against the pair : (a, m)

[6]: I suppose at profile : (r(6), r(6))->r(6) without violation so far.
The SWF under construction: -----------------------------------6

[7]: A plan : (r(6), r(5))->r(1) violates the Pareto condition against the pair : (e, a)

[8]: A plan : (r(6), r(5))->r(2) violates the Pareto condition against the pair : (e, m)
[9]: A plan : (r(6), r(5))->r(3) violates the Pareto condition against the pair : (e, a)

[10]: A plan : (r(6), r(5))->r(4) violates the Pareto condition against the pair : (e, a)
[11]: I suppose at profile : (r(6), r(5))->r(5) without violation so far.

The SWF under construction: ----------------------------------56

[12]: A plan : (r(6), r(4))->r(1) violates the Pareto condition against the pair : (e, m)
[13]: A plan : (r(6), r(4))->r(2) violates the Pareto condition against the pair : (e, m)

[14]: A plan : (r(6), r(4))->r(3) violates the Pareto condition against the pair : (e, m)
[15]: I suppose at profile : (r(6), r(4))->r(4) without violation so far.

The SWF under construction: ---------------------------------456

[16]: A plan : (r(6), r(3))->r(1) violates the Pareto condition against the pair : (a, m)
[17]: A plan : (r(6), r(3))->r(2) violates the Pareto condition against the pair : (a, m)

[18]: I suppose at profile : (r(6), r(3))->r(3) without violation so far.
The SWF under construction: --------------------------------3456

[19]: A plan : (r(6), r(2))->r(1) violates the Pareto condition against the pair : (e, a)

[20]: I suppose at profile : (r(6), r(2))->r(2) without violation so far.

18 Kenryo INDO

The SWF under construction: -------------------------------23456

[21]: I suppose at profile : (r(6), r(1))->r(1) without violation so far.

The SWF under construction: ------------------------------123456
[22]: A plan : (r(5), r(6))->r(1) violates the Pareto condition against the pair : (e, m)

[23]: A plan : (r(5), r(6))->r(2) violates the Pareto condition against the pair : (e, m)
[24]: A plan : (r(5), r(6))->r(3) violates the Pareto condition against the pair : (e, m)

[25]: A plan : (r(5), r(6))->r(4) violates the Pareto condition against the pair : (e, a)

[26]: I suppose at profile : (r(5), r(6))->r(5) without violation so far.
The SWF under construction: -----------------------------5123456

[27]: A plan : (r(5), r(5))->r(1) violates the Pareto condition against the pair : (e, m)
[28]: A plan : (r(5), r(5))->r(2) violates the Pareto condition against the pair : (e, m)

[29]: A plan : (r(5), r(5))->r(3) violates the Pareto condition against the pair : (e, m)

[30]: A plan : (r(5), r(5))->r(4) violates the Pareto condition against the pair : (e, a)
[31]: I suppose at profile : (r(5), r(5))->r(5) without violation so far.

The SWF under construction: ----------------------------55123456
[32]: A plan : (r(5), r(4))->r(1) violates the Pareto condition against the pair : (e, m)

[33]: A plan : (r(5), r(4))->r(2) violates the Pareto condition against the pair : (e, m)

[34]: A plan : (r(5), r(4))->r(3) violates the Pareto condition against the pair : (e, m)
[35]: A plan : (r(5), r(4))->r(4) violates the IIA condition against the pair : (m, a) and : (r(5), r(6)->r(5)).

[36]: A plan : (r(5), r(4))->r(5) violates the IIA condition against the pair : (a, e) and : (r(6), r(1)->r(1)).
[37]: A plan : (r(5), r(4))->r(6) violates the IIA condition against the pair : (m, a) and : (r(5), r(6)->r(5)).

[38]: A plan : (r(5), r(5))->r(6) violates the Pareto condition against the pair : (m, a)

[39]: I suppose at profile : (r(5), r(6))->r(6) without violation so far.
The SWF under construction: -----------------------------6123456

[40]: A plan : (r(5), r(5))->r(1) violates the Pareto condition against the pair : (e, m)
[41]: A plan : (r(5), r(5))->r(2) violates the Pareto condition against the pair : (e, m)

[42]: A plan : (r(5), r(5))->r(3) violates the Pareto condition against the pair : (e, m)

[43]: A plan : (r(5), r(5))->r(4) violates the Pareto condition against the pair : (e, a)
[44]: I suppose at profile : (r(5), r(5))->r(5) without violation so far.

The SWF under construction: ----------------------------56123456
[45]: A plan : (r(5), r(4))->r(1) violates the Pareto condition against the pair : (e, m)

[46]: A plan : (r(5), r(4))->r(2) violates the Pareto condition against the pair : (e, m)

[47]: A plan : (r(5), r(4))->r(3) violates the Pareto condition against the pair : (e, m)
[48]: I suppose at profile : (r(5), r(4))->r(4) without violation so far.

The SWF under construction: ---------------------------456123456
[49]: A plan : (r(5), r(3))->r(1) violates the IIA condition against the pair : (m, a) and : (r(5), r(4)->r(4)).

[50]: A plan : (r(5), r(3))->r(2) violates the IIA condition against the pair : (m, a) and : (r(5), r(4)->r(4)).

[51]: I suppose at profile : (r(5), r(3))->r(3) without violation so far.
The SWF under construction: --------------------------3456123456

[52]: A plan : (r(5), r(2))->r(1) violates the Pareto condition against the pair : (e, a)
[53]: I suppose at profile : (r(5), r(2))->r(2) without violation so far.

The SWF under construction: -------------------------23456123456

[54]: I suppose at profile : (r(5), r(1))->r(1) without violation so far.
The SWF under construction: ------------------------123456123456

[55]: A plan : (r(4), r(6))->r(1) violates the Pareto condition against the pair : (a, m)
[56]: A plan : (r(4), r(6))->r(2) violates the Pareto condition against the pair : (a, m)

[57]: A plan : (r(4), r(6))->r(3) violates the Pareto condition against the pair : (e, m)

[58]: I suppose at profile : (r(4), r(6))->r(4) without violation so far.
The SWF under construction: -----------------------4123456123456

[59]: A plan : (r(4), r(5))->r(1) violates the Pareto condition against the pair : (e, m)
[60]: A plan : (r(4), r(5))->r(2) violates the Pareto condition against the pair : (e, m)

[61]: A plan : (r(4), r(5))->r(3) violates the Pareto condition against the pair : (e, m)

[62]: A plan : (r(4), r(5))->r(4) violates the IIA condition against the pair : (m, a) and : (r(6), r(1)->r(1)).
[63]: A plan : (r(4), r(5))->r(5) violates the IIA condition against the pair : (a, e) and : (r(4), r(6)->r(4)).

[64]: A plan : (r(4), r(5))->r(6) violates the IIA condition against the pair : (a, e) and : (r(4), r(6)->r(4)).
[65]: A plan : (r(4), r(6))->r(5) violates the Pareto condition against the pair : (a, m)

[66]: I suppose at profile : (r(4), r(6))->r(6) without violation so far.

The SWF under construction: -----------------------6123456123456
[67]: A plan : (r(4), r(5))->r(1) violates the Pareto condition against the pair : (e, m)

An automated proof of Arrow’s theorem 19

[68]: A plan : (r(4), r(5))->r(2) violates the Pareto condition against the pair : (e, m)

[69]: A plan : (r(4), r(5))->r(3) violates the Pareto condition against the pair : (e, m)

[70]: A plan : (r(4), r(5))->r(4) violates the IIA condition against the pair : (a, e) and : (r(4), r(6)->r(6)).
[71]: I suppose at profile : (r(4), r(5))->r(5) without violation so far.

The SWF under construction: ----------------------56123456123456
[72]: A plan : (r(4), r(4))->r(1) violates the Pareto condition against the pair : (a, m)

[73]: A plan : (r(4), r(4))->r(2) violates the Pareto condition against the pair : (a, e)

[74]: A plan : (r(4), r(4))->r(3) violates the Pareto condition against the pair : (e, m)
[75]: I suppose at profile : (r(4), r(4))->r(4) without violation so far.

The SWF under construction: ---------------------456123456123456
[76]: A plan : (r(4), r(3))->r(1) violates the Pareto condition against the pair : (a, m)

[77]: A plan : (r(4), r(3))->r(2) violates the Pareto condition against the pair : (a, e)

[78]: I suppose at profile : (r(4), r(3))->r(3) without violation so far.
The SWF under construction: --------------------3456123456123456

[79]: A plan : (r(4), r(2))->r(1) violates the IIA condition against the pair : (a, e) and : (r(4), r(5)->r(5)).
[80]: I suppose at profile : (r(4), r(2))->r(2) without violation so far.

The SWF under construction: -------------------23456123456123456

[81]: I suppose at profile : (r(4), r(1))->r(1) without violation so far.
The SWF under construction: ------------------123456123456123456

[82]: A plan : (r(3), r(6))->r(1) violates the Pareto condition against the pair : (a, m)
[83]: A plan : (r(3), r(6))->r(2) violates the Pareto condition against the pair : (a, m)

[84]: A plan : (r(3), r(6))->r(3) violates the IIA condition against the pair : (a, e) and : (r(4), r(2)->r(2)).

[85]: A plan : (r(3), r(6))->r(4) violates the IIA condition against the pair : (a, e) and : (r(4), r(2)->r(2)).
[86]: A plan : (r(3), r(6))->r(5) violates the Pareto condition against the pair : (a, m)

[87]: I suppose at profile : (r(3), r(6))->r(6) without violation so far.
The SWF under construction: -----------------6123456123456123456

[88]: A plan : (r(3), r(5))->r(1) violates the IIA condition against the pair : (m, e) and : (r(3), r(6)->r(6)).

[89]: A plan : (r(3), r(5))->r(2) violates the IIA condition against the pair : (m, e) and : (r(3), r(6)->r(6)).
[90]: A plan : (r(3), r(5))->r(3) violates the IIA condition against the pair : (m, e) and : (r(3), r(6)->r(6)).

[91]: A plan : (r(3), r(5))->r(4) violates the IIA condition against the pair : (a, e) and : (r(3), r(6)->r(6)).
[92]: I suppose at profile : (r(3), r(5))->r(5) without violation so far.

The SWF under construction: ----------------56123456123456123456

[93]: A plan : (r(3), r(4))->r(1) violates the Pareto condition against the pair : (a, m)
[94]: A plan : (r(3), r(4))->r(2) violates the Pareto condition against the pair : (a, m)

[95]: A plan : (r(3), r(4))->r(3) violates the IIA condition against the pair : (m, e) and : (r(3), r(5)->r(5)).
[96]: I suppose at profile : (r(3), r(4))->r(4) without violation so far.

The SWF under construction: ---------------456123456123456123456

[97]: A plan : (r(3), r(3))->r(1) violates the Pareto condition against the pair : (a, m)
[98]: A plan : (r(3), r(3))->r(2) violates the Pareto condition against the pair : (a, m)

[99]: I suppose at profile : (r(3), r(3))->r(3) without violation so far.
The SWF under construction: --------------3456123456123456123456

[100]: A plan : (r(3), r(2))->r(1) violates the IIA condition against the pair : (a, e) and : (r(3), r(5)->r(5)).

[101]: I suppose at profile : (r(3), r(2))->r(2) without violation so far.
The SWF under construction: -------------23456123456123456123456

[102]: I suppose at profile : (r(3), r(1))->r(1) without violation so far.
The SWF under construction: ------------123456123456123456123456

[103]: A plan : (r(2), r(6))->r(1) violates the Pareto condition against the pair : (e, a)

[104]: A plan : (r(2), r(6))->r(2) violates the IIA condition against the pair : (m, e) and : (r(3), r(4)->r(4)).
[105]: A plan : (r(2), r(6))->r(3) violates the Pareto condition against the pair : (e, a)

[106]: A plan : (r(2), r(6))->r(4) violates the Pareto condition against the pair : (e, a)
[107]: A plan : (r(2), r(6))->r(5) violates the IIA condition against the pair : (m, a) and : (r(5), r(3)->r(3)).

[108]: I suppose at profile : (r(2), r(6))->r(6) without violation so far.

The SWF under construction: -----------6123456123456123456123456
[109]: A plan : (r(2), r(5))->r(1) violates the Pareto condition against the pair : (e, a)

[110]: A plan : (r(2), r(5))->r(2) violates the IIA condition against the pair : (m, e) and : (r(2), r(6)->r(6)).
[111]: A plan : (r(2), r(5))->r(3) violates the Pareto condition against the pair : (m, a)

[112]: A plan : (r(2), r(5))->r(4) violates the Pareto condition against the pair : (m, a)

[113]: I suppose at profile : (r(2), r(5))->r(5) without violation so far.
The SWF under construction: ----------56123456123456123456123456

20 Kenryo INDO

[114]: A plan : (r(2), r(4))->r(1) violates the IIA condition against the pair : (m, e) and : (r(2), r(5)->r(5)).

[115]: A plan : (r(2), r(4))->r(2) violates the IIA condition against the pair : (m, e) and : (r(2), r(5)->r(5)).

[116]: A plan : (r(2), r(4))->r(3) violates the IIA condition against the pair : (m, e) and : (r(2), r(5)->r(5)).
[117]: I suppose at profile : (r(2), r(4))->r(4) without violation so far.

The SWF under construction: ---------456123456123456123456123456
[118]: A plan : (r(2), r(3))->r(1) violates the IIA condition against the pair : (m, a) and : (r(2), r(4)->r(4)).

[119]: A plan : (r(2), r(3))->r(2) violates the IIA condition against the pair : (m, a) and : (r(2), r(4)->r(4)).

[120]: I suppose at profile : (r(2), r(3))->r(3) without violation so far.
The SWF under construction: --------3456123456123456123456123456

[121]: A plan : (r(2), r(2))->r(1) violates the Pareto condition against the pair : (e, a)
[122]: I suppose at profile : (r(2), r(2))->r(2) without violation so far.

The SWF under construction: -------23456123456123456123456123456

[123]: I suppose at profile : (r(2), r(1))->r(1) without violation so far.
The SWF under construction: ------123456123456123456123456123456

[124]: A plan : (r(1), r(6))->r(1) violates the IIA condition against the pair : (m, a) and : (r(2), r(3)->r(3)).
[125]: A plan : (r(1), r(6))->r(2) violates the IIA condition against the pair : (m, a) and : (r(2), r(3)->r(3)).

[126]: A plan : (r(1), r(6))->r(3) violates the IIA condition against the pair : (m, e) and : (r(2), r(4)->r(4)).

[127]: A plan : (r(1), r(6))->r(4) violates the IIA condition against the pair : (a, e) and : (r(3), r(2)->r(2)).
[128]: A plan : (r(1), r(6))->r(5) violates the IIA condition against the pair : (m, a) and : (r(2), r(3)->r(3)).

[129]: I suppose at profile : (r(1), r(6))->r(6) without violation so far.
The SWF under construction: -----6123456123456123456123456123456

[130]: A plan : (r(1), r(5))->r(1) violates the IIA condition against the pair : (m, e) and : (r(1), r(6)->r(6)).

[131]: A plan : (r(1), r(5))->r(2) violates the IIA condition against the pair : (m, e) and : (r(1), r(6)->r(6)).
[132]: A plan : (r(1), r(5))->r(3) violates the Pareto condition against the pair : (m, a)

[133]: A plan : (r(1), r(5))->r(4) violates the Pareto condition against the pair : (m, a)
[134]: I suppose at profile : (r(1), r(5))->r(5) without violation so far.

The SWF under construction: ----56123456123456123456123456123456

[135]: A plan : (r(1), r(4))->r(1) violates the IIA condition against the pair : (m, e) and : (r(1), r(5)->r(5)).
[136]: A plan : (r(1), r(4))->r(2) violates the Pareto condition against the pair : (a, e)

[137]: A plan : (r(1), r(4))->r(3) violates the IIA condition against the pair : (m, e) and : (r(1), r(5)->r(5)).
[138]: I suppose at profile : (r(1), r(4))->r(4) without violation so far.

The SWF under construction: ---456123456123456123456123456123456

[139]: A plan : (r(1), r(3))->r(1) violates the IIA condition against the pair : (m, a) and : (r(1), r(4)->r(4)).
[140]: A plan : (r(1), r(3))->r(2) violates the Pareto condition against the pair : (a, e)

[141]: I suppose at profile : (r(1), r(3))->r(3) without violation so far.
The SWF under construction: --3456123456123456123456123456123456

[142]: A plan : (r(1), r(2))->r(1) violates the IIA condition against the pair : (a, e) and : (r(1), r(5)->r(5)).

[143]: I suppose at profile : (r(1), r(2))->r(2) without violation so far.
The SWF under construction: -23456123456123456123456123456123456

[144]: I suppose at profile : (r(1), r(1))->r(1) without violation so far.
The SWF under construction:123456123456123456123456123456123456

%---------- end of data ------------%

% file output end time , [date(2006/3/25), time(18:19:38)]

Appendix B. The source code for binary relation based modeling1

% The source code of "An automated proof of Arrow’s theorem:

% A version in binary relations"

% By Kenryo INDO (Kanto Gakuen University)

% program name: swf_bin.pl (23 Mar 2006)

% language: PROLOG (tested on swi-prolog 5.0.10)

% modeling preference relations

1 Earlier versions are downloadable. (http://www.us.kanto-gakuen.ac.jp/indo/front_e.html)

An automated proof of Arrow’s theorem 21

%--

alternatives([m,a,e]).

possible_ranking_0([m,a,e], r(1)).

possible_ranking_0([m,e,a], r(2)).

possible_ranking_0([a,m,e], r(3)).

possible_ranking_0([a,e,m], r(4)).

possible_ranking_0([e,m,a], r(5)).

possible_ranking_0([e,a,m], r(6)).

x_precedes_y_in_list(X, Y, R):-

 append(_,[X|Z],R), member(Y, Z).

prefer_x_to_y(X, Y, Rn):-

 possible_ranking_0(R, Rn),

 x_precedes_y_in_list(X, Y, R).

distinct_pair_lex(X, Y):- distinct_pair(X, Y),

 alternatives(A),

 x_precedes_y_in_list(X, Y, A).

distinct_pair(X, Y):-

 alternatives(A),

 member(X, A),

 exsists_in_preference(X),

 member(Y, A),

 Y \= X,

 exsists_in_preference(Y).

exsists_in_preference(X):-

 \+ \+ (

 possible_ranking_0(R,_),

 member(X,R)

).

% SWF in binary comparisons

%--

swf_bin(W):-

 findall((X,Y), distinct_pair_lex(X,Y),Lb),

 swf_bin_1(Lb, W),

 \+ inconsistent_bin(W, _).

swf_bin_1([],[]).

swf_bin_1([(X,Y)|L],[(X,Y):Fb|W]):-

 swf_bin_1(L,W),

 swf_bin_2([X,Y],(X,Y),Fb),

 %noimposed_bin((X,Y),Fb), %use this for Wilson's theorem

 true.

swf_bin_2([],_,[]).

swf_bin_2([Rb1|H1],(X,Y), [Swf|W]):-

 swf_bin_2(H1,(X,Y), W),

22 Kenryo INDO

 swf_bin_3(Rb1,(X,Y),[X,Y],Swf).

swf_bin_3(_, _,[],[]).

swf_bin_3(Rb1,(X,Y),[Rb2|H2],[(Rb1,Rb2)->Rb|F]):-

 swf_bin_3(Rb1,(X,Y),H2,F),

 unanimity_bin((X,Y),[Rb,Rb1,Rb2]), %comment out if without (P).

 member(Rb,[X,Y]).

unanimity_bin((X,_),[X,X,X]).

unanimity_bin((_,Y),[Y,Y,Y]).

unanimity_bin((_,_),[_,R,S]):- not(R = S).

inconsistent_bin([B1:Fma,B2:Fme,B3:Fae], [V1,V2,V3]):-

 flatten(Fma, Wma),

 flatten(Fme, Wme),

 flatten(Fae, Wae),

 member((A,S)->P, Wma), V1= B1: ((A,S)->P),

 member((B,T)->Q, Wme), V2= B2: ((B,T)->Q),

 member((C,U)->R, Wae), V3= B3: ((C,U)->R),

 Circulars= [(m,e,a),(a,m,e)],

 \+ member((A,B,C), Circulars),

 \+ member((S,T,U), Circulars),

 member((P,Q,R), Circulars).

noimposed_bin((X,Y),Fb):-

 flatten(Fb,Fb1),

 \+ \+ member(_->X,Fb1),

 \+ \+ member(_->Y,Fb1).

% tabular form display

%--

show_swf_bin(W):-

 distinct_pair(X,Y),

 show_swf_bin((X,Y),W),

 fail.

show_swf_bin(_):-

 nl,

 write('end of SWF').

show_swf_bin((X,Y),W):-

 member((X,Y):Fb,W),

 nl,

 write(pair:(X,Y)),

 forall(

 member(A,Fb),

 (nl,tab(4),write(A))

).

% end of the program

%--

